These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 15503967)
1. Construction of realistic branched, three-dimensional arteries suitable for computational modelling of flow. Corney S; Johnston PR; Kilpatrick D Med Biol Eng Comput; 2004 Sep; 42(5):660-8. PubMed ID: 15503967 [TBL] [Abstract][Full Text] [Related]
2. Computational hemodynamics of an implanted coronary stent based on three-dimensional cine angiography reconstruction. Chen MC; Lu PC; Chen JS; Hwang NH ASAIO J; 2005; 51(4):313-20. PubMed ID: 16156292 [TBL] [Abstract][Full Text] [Related]
3. Requirements for mesh resolution in 3D computational hemodynamics. Prakash S; Ethier CR J Biomech Eng; 2001 Apr; 123(2):134-44. PubMed ID: 11340874 [TBL] [Abstract][Full Text] [Related]
4. Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. De Santis G; Mortier P; De Beule M; Segers P; Verdonck P; Verhegghe B Med Biol Eng Comput; 2010 Apr; 48(4):371-80. PubMed ID: 20162466 [TBL] [Abstract][Full Text] [Related]
5. Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images. Yang J; Wang Y; Liu Y; Tang S; Chen W IEEE Trans Image Process; 2009 Jul; 18(7):1563-72. PubMed ID: 19414289 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional reconstruction of stenosed coronary artery segments with assessment of the flow impedance. Hulzbosch AA; Slump CH; Viergever MA Int J Card Imaging; 1990; 5(2-3):135-43. PubMed ID: 2230291 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional tracking of coronary arteries from biplane angiographic sequences using parametrically deformable models. Sarry L; Boire JY IEEE Trans Med Imaging; 2001 Dec; 20(12):1341-51. PubMed ID: 11811834 [TBL] [Abstract][Full Text] [Related]
9. Quantitative Analysis of Deformable Model-Based 3-D Reconstruction of Coronary Artery From Multiple Angiograms. Cong W; Yang J; Ai D; Chen Y; Liu Y; Wang Y IEEE Trans Biomed Eng; 2015 Aug; 62(8):2079-90. PubMed ID: 25807562 [TBL] [Abstract][Full Text] [Related]
10. Virtual 3D IVUS vessel model for intravascular brachytherapy planning. I. 3D segmentation, reconstruction, and visualization of coronary artery architecture and orientation. Weichert F; Müller H; Quast U; Kraushaar A; Spilles P; Heintz M; Wilke C; von Birgelen C; Erbel R; Wegener D Med Phys; 2003 Sep; 30(9):2530-6. PubMed ID: 14528975 [TBL] [Abstract][Full Text] [Related]
11. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images. Bourantas CV; Kourtis IC; Plissiti ME; Fotiadis DI; Katsouras CS; Papafaklis MI; Michalis LK Comput Med Imaging Graph; 2005 Dec; 29(8):597-606. PubMed ID: 16278063 [TBL] [Abstract][Full Text] [Related]
12. Patient-Specific Computational Models of Coronary Arteries Using Monoplane X-Ray Angiograms. Zifan A; Liatsis P Comput Math Methods Med; 2016; 2016():2695962. PubMed ID: 27403203 [TBL] [Abstract][Full Text] [Related]
13. Blood flow patterns in an anatomically realistic coronary vessel: influence of three different reconstruction methods. Berthier B; Bouzerar R; Legallais C J Biomech; 2002 Oct; 35(10):1347-56. PubMed ID: 12231280 [TBL] [Abstract][Full Text] [Related]
14. A quantitative analysis of 3-D coronary modeling from two or more projection images. Movassaghi B; Rasche V; Grass M; Viergever MA; Niessen WJ IEEE Trans Med Imaging; 2004 Dec; 23(12):1517-31. PubMed ID: 15575409 [TBL] [Abstract][Full Text] [Related]
15. Anatomically correct three-dimensional coronary artery reconstruction using frequency domain optical coherence tomographic and angiographic data: head-to-head comparison with intravascular ultrasound for endothelial shear stress assessment in humans. Papafaklis MI; Bourantas CV; Yonetsu T; Vergallo R; Kotsia A; Nakatani S; Lakkas LS; Athanasiou LS; Naka KK; Fotiadis DI; Feldman CL; Stone PH; Serruys PW; Jang IK; Michalis LK EuroIntervention; 2015 Aug; 11(4):407-15. PubMed ID: 24974809 [TBL] [Abstract][Full Text] [Related]
16. Estimation of wall shear stress in bypass grafts with computational fluid dynamics method. Goubergrits L; Affeld K; Wellnhofer E; ZurbrüggR ; Holmer T Int J Artif Organs; 2001 Mar; 24(3):145-51. PubMed ID: 11314808 [TBL] [Abstract][Full Text] [Related]
17. Improved determination of biplane imaging geometry from two projection images and its application to three-dimensional reconstruction of coronary arterial trees. Chen SY; Metz CE Med Phys; 1997 May; 24(5):633-54. PubMed ID: 9167155 [TBL] [Abstract][Full Text] [Related]
18. Dynamic three-dimensional reconstruction and modeling of cardiovascular anatomy in children with congenital heart disease using biplane angiography. Lanning C; Chen SY; Hansgen A; Chang D; Chan KC; Shandas R Biomed Sci Instrum; 2004; 40():200-5. PubMed ID: 15133958 [TBL] [Abstract][Full Text] [Related]
19. Coronary artery WSS profiling using a geometry reconstruction based on biplane angiography. Goubergrits L; Wellnhofer E; Kertzscher U; Affeld K; Petz C; Hege HC Ann Biomed Eng; 2009 Apr; 37(4):682-91. PubMed ID: 19229618 [TBL] [Abstract][Full Text] [Related]
20. Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images. Ladak HM; Milner JS; Steinman DA J Biomech Eng; 2000 Feb; 122(1):96-9. PubMed ID: 10790835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]