BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 15504039)

  • 1. Isoleucine 69 and valine 325 form a specificity pocket in human muscle creatine kinase.
    Novak WR; Wang PF; McLeish MJ; Kenyon GL; Babbitt PC
    Biochemistry; 2004 Nov; 43(43):13766-74. PubMed ID: 15504039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T; Kamidochi M; Inoue N; Kawamichi H; Yazawa Y; Furukohri T; Ellington WR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin and properties of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Saishoji N; Ichinari S; Ellington WR; Suzuki T
    FEBS J; 2005 Jul; 272(14):3521-30. PubMed ID: 16008553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of phosphagen specificity loops in arginine kinase.
    Azzi A; Clark SA; Ellington WR; Chapman MS
    Protein Sci; 2004 Mar; 13(3):575-85. PubMed ID: 14978299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues.
    Chen LH; Borders CL; Vásquez JR; Kenyon GL
    Biochemistry; 1996 Jun; 35(24):7895-902. PubMed ID: 8672491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of two acidic active site residues in human muscle creatine kinase: implications for the catalytic mechanism.
    Cantwell JS; Novak WR; Wang PF; McLeish MJ; Kenyon GL; Babbitt PC
    Biochemistry; 2001 Mar; 40(10):3056-61. PubMed ID: 11258919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loop movement and catalysis in creatine kinase.
    Wang PF; Flynn AJ; McLeish MJ; Kenyon GL
    IUBMB Life; 2005; 57(4-5):355-62. PubMed ID: 16036620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of C-terminal loop residues of dimeric arginine kinase from sea cucumber Stichopus japonicus in catalysis, specificity and structure.
    Zhang JW; Zhao TJ; Wang SL; Guo Q; Liu TT; Zhao F; Wang XC
    Int J Biol Macromol; 2006 May; 38(3-5):203-10. PubMed ID: 16574215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase.
    Borders CL; MacGregor KM; Edmiston PL; Gbeddy ER; Thomenius MJ; Mulligan GB; Snider MJ
    Protein Sci; 2003 Mar; 12(3):532-7. PubMed ID: 12592023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphagen kinase of the giant tubeworm Riftia pachyptila. Cloning and expression of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Tanaka K; Bailly X; Zal F; Suzuki T
    Int J Biol Macromol; 2005 Oct; 37(1-2):54-60. PubMed ID: 16188310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and expression of a lombricine kinase from an echiuroid worm: insights into structural correlates of substrate specificity.
    Ellington WR; Bush J
    Biochem Biophys Res Commun; 2002 Mar; 291(4):939-44. PubMed ID: 11866456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of an active monomer of rabbit muscle creatine kinase by site-directed mutagenesis: the effect of quaternary structure on catalysis and stability.
    Cox JM; Davis CA; Chan C; Jourden MJ; Jorjorian AD; Brym MJ; Snider MJ; Borders CL; Edmiston PL
    Biochemistry; 2003 Feb; 42(7):1863-71. PubMed ID: 12590573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions to catalysis and potential interactions of the three catalytic domains in a contiguous trimeric creatine kinase.
    Hoffman GG; Davulcu O; Sona S; Ellington WR
    FEBS J; 2008 Feb; 275(4):646-54. PubMed ID: 18190534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of amino acid replacements of glycine 20 on conformational stability and catalysis of staphylococcal nuclease.
    Feng Y; Huang S; Zhang W; Zeng Z; Zou X; Zhong L; Peng J; Jing G
    Biochimie; 2004 Dec; 86(12):893-901. PubMed ID: 15667939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypotaurocyamine kinase evolved from a gene for arginine kinase.
    Uda K; Iwai A; Suzuki T
    FEBS Lett; 2005 Dec; 579(30):6756-62. PubMed ID: 16325813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stichopus japonicus arginine kinase: gene structure and unique substrate recognition system.
    Suzuki T; Yamamoto Y; Umekawa M
    Biochem J; 2000 Nov; 351 Pt 3(Pt 3):579-85. PubMed ID: 11042111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The isoenzyme-diagnostic regions of muscle-type creatine kinase, the M-260 and M-300 box, are not responsible for its binding to the myofibrillar M-band.
    Stolz M; Kraft T; Wallimann T
    Eur J Cell Biol; 1998 Sep; 77(1):1-9. PubMed ID: 9808283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key NAD+-binding residues in human 15-hydroxyprostaglandin dehydrogenase.
    Cho H; Hamza A; Zhan CG; Tai HH
    Arch Biochem Biophys; 2005 Jan; 433(2):447-53. PubMed ID: 15581601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.