BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 15504043)

  • 1. Glycolipid transfer protein mediated transfer of glycosphingolipids between membranes: a model for action based on kinetic and thermodynamic analyses.
    Rao CS; Lin X; Pike HM; Molotkovsky JG; Brown RE
    Biochemistry; 2004 Nov; 43(43):13805-15. PubMed ID: 15504043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycolipid transfer protein interaction with bilayer vesicles: modulation by changing lipid composition.
    Rao CS; Chung T; Pike HM; Brown RE
    Biophys J; 2005 Dec; 89(6):4017-28. PubMed ID: 16169991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein mediated glycolipid transfer is inhibited FROM sphingomyelin membranes but enhanced TO sphingomyelin containing raft like membranes.
    Nylund M; Mattjus P
    Biochim Biophys Acta; 2005 May; 1669(2):87-94. PubMed ID: 15893510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing for preferential interactions among sphingolipids in bilayer vesicles using the glycolipid transfer protein.
    Mattjus P; Kline A; Pike HM; Molotkovsky JG; Brown RE
    Biochemistry; 2002 Jan; 41(1):266-73. PubMed ID: 11772025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane curvature effects on glycolipid transfer protein activity.
    Nylund M; Fortelius C; Palonen EK; Molotkovsky JG; Mattjus P
    Langmuir; 2007 Nov; 23(23):11726-33. PubMed ID: 17915897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane interaction and activity of the glycolipid transfer protein.
    West G; Nylund M; Peter Slotte J; Mattjus P
    Biochim Biophys Acta; 2006 Nov; 1758(11):1732-42. PubMed ID: 16908009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charged membrane surfaces impede the protein-mediated transfer of glycosphingolipids between phospholipid bilayers.
    Mattjus P; Pike HM; Molotkovsky JG; Brown RE
    Biochemistry; 2000 Feb; 39(5):1067-75. PubMed ID: 10653652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glycolipid transfer protein (GLTP) domain of phosphoinositol 4-phosphate adaptor protein-2 (FAPP2): structure drives preference for simple neutral glycosphingolipids.
    Kamlekar RK; Simanshu DK; Gao YG; Kenoth R; Pike HM; Prendergast FG; Malinina L; Molotkovsky JG; Venyaminov SY; Patel DJ; Brown RE
    Biochim Biophys Acta; 2013 Feb; 1831(2):417-27. PubMed ID: 23159414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolipid transfer proteins.
    Brown RE; Mattjus P
    Biochim Biophys Acta; 2007 Jun; 1771(6):746-60. PubMed ID: 17320476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human glycolipid transfer protein: probing conformation using fluorescence spectroscopy.
    Li XM; Malakhova ML; Lin X; Pike HM; Chung T; Molotkovsky JG; Brown RE
    Biochemistry; 2004 Aug; 43(31):10285-94. PubMed ID: 15287756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point mutational analysis of the liganding site in human glycolipid transfer protein. Functionality of the complex.
    Malakhova ML; Malinina L; Pike HM; Kanack AT; Patel DJ; Brown RE
    J Biol Chem; 2005 Jul; 280(28):26312-20. PubMed ID: 15901739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic modulation of the glycosphingolipid content in supported lipid bilayers by glycolipid transfer protein.
    Carton I; Malinina L; Richter RP
    Biophys J; 2010 Nov; 99(9):2947-56. PubMed ID: 21044592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The liganding of glycolipid transfer protein is controlled by glycolipid acyl structure.
    Malinina L; Malakhova ML; Kanack AT; Lu M; Abagyan R; Brown RE; Patel DJ
    PLoS Biol; 2006 Nov; 4(11):e362. PubMed ID: 17105344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring glycolipid transfer protein activity and membrane interaction with the surface plasmon resonance technique.
    Ohvo-Rekilä H; Mattjus P
    Biochim Biophys Acta; 2011 Jan; 1808(1):47-54. PubMed ID: 20804726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C8-glycosphingolipids preferentially insert into tumor cell membranes and promote chemotherapeutic drug uptake.
    Cordeiro Pedrosa LR; van Cappellen WA; Steurer B; Ciceri D; ten Hagen TL; Eggermont AM; Verheij M; Goñi FM; Koning GA; Contreras FX
    Biochim Biophys Acta; 2015 Aug; 1848(8):1656-70. PubMed ID: 25917957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and Thermodynamic Analysis of Cholesterol Transfer between Phospholipid Vesicles and Nanodiscs.
    Matsuzaki N; Handa T; Nakano M
    J Phys Chem B; 2015 Jul; 119(30):9764-71. PubMed ID: 26186093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GLTP-fold interaction with planar phosphatidylcholine surfaces is synergistically stimulated by phosphatidic acid and phosphatidylethanolamine.
    Zhai X; Momsen WE; Malakhov DA; Boldyrev IA; Momsen MM; Molotkovsky JG; Brockman HL; Brown RE
    J Lipid Res; 2013 Apr; 54(4):1103-13. PubMed ID: 23369752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of a protein with membrane vesicles at the collisional limit: studies with blood coagulation factor Va light chain also suggest major differences between small and large unilamellar vesicles.
    Abbott AJ; Nelsestuen GL
    Biochemistry; 1987 Dec; 26(24):7994-8003. PubMed ID: 3427119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity of the mammalian glycolipid transfer proteins.
    Mattjus P
    Chem Phys Lipids; 2016 Jan; 194():72-8. PubMed ID: 26234207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular features of phospholipids that affect glycolipid transfer protein-mediated galactosylceramide transfer between vesicles.
    Nylund M; Kjellberg MA; Molotkovsky JG; Byun HS; Bittman R; Mattjus P
    Biochim Biophys Acta; 2006 Jun; 1758(6):807-12. PubMed ID: 16777057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.