BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 15504047)

  • 1. Dynamic motions of CD39 transmembrane domains regulate and are regulated by the enzymatic active site.
    Grinthal A; Guidotti G
    Biochemistry; 2004 Nov; 43(43):13849-58. PubMed ID: 15504047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constraints imposed by transmembrane domains affect enzymatic activity of membrane-associated human CD39/NTPDase1 mutants.
    Musi E; Islam N; Drosopoulos JH
    Arch Biochem Biophys; 2007 May; 461(1):30-9. PubMed ID: 17374358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilayer mechanical properties regulate the transmembrane helix mobility and enzymatic state of CD39.
    Grinthal A; Guidotti G
    Biochemistry; 2007 Jan; 46(1):279-90. PubMed ID: 17198399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural elements and limited proteolysis of CD39 influence ATP diphosphohydrolase activity.
    Schulte am Esch J; Sévigny J; Kaczmarek E; Siegel JB; Imai M; Koziak K; Beaudoin AR; Robson SC
    Biochemistry; 1999 Feb; 38(8):2248-58. PubMed ID: 10029517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Rat NTPDase1, -2, and -3 ectodomains refolded from bacterial inclusion bodies.
    Zebisch M; Sträter N
    Biochemistry; 2007 Oct; 46(42):11945-56. PubMed ID: 17910474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitution of His59 converts CD39 apyrase into an ADPase in a quaternary structure dependent manner.
    Grinthal A; Guidotti G
    Biochemistry; 2000 Jan; 39(1):9-16. PubMed ID: 10625474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single amino acid substitution in the putative transmembrane helix V in KdpB of the KdpFABC complex of Escherichia coli uncouples ATPase activity and ion transport.
    Bramkamp M; Altendorf K
    Biochemistry; 2005 Jun; 44(23):8260-6. PubMed ID: 15938615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of amino acids at two dimer interface regions of the alpha-factor receptor (Ste2).
    Wang HX; Konopka JB
    Biochemistry; 2009 Aug; 48(30):7132-9. PubMed ID: 19588927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-induced conformational changes in the Bacillus subtilis chemoreceptor McpB determined by disulfide crosslinking in vivo.
    Szurmant H; Bunn MW; Cho SH; Ordal GW
    J Mol Biol; 2004 Dec; 344(4):919-28. PubMed ID: 15544802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of an antiparallel, intermolecular coiled coil is associated with in vivo dimerization of osmosensor and osmoprotectant transporter ProP in Escherichia coli.
    Hillar A; Culham DE; Vernikovska YI; Wood JM; Boggs JM
    Biochemistry; 2005 Aug; 44(30):10170-80. PubMed ID: 16042394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycosylation is essential for functional expression of a human brain ecto-apyrase.
    Smith TM; Kirley TL
    Biochemistry; 1999 Feb; 38(5):1509-16. PubMed ID: 9931016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane domains confer different substrate specificities and adenosine diphosphate hydrolysis mechanisms on CD39, CD39L1, and chimeras.
    Grinthal A; Guidotti G
    Biochemistry; 2002 Feb; 41(6):1947-56. PubMed ID: 11827541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionality of the seventh and eighth transmembrane domains of acyl-coenzyme A:cholesterol acyltransferase 1.
    Guo ZY; Chang CC; Chang TY
    Biochemistry; 2007 Sep; 46(35):10063-71. PubMed ID: 17691824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and structural roles of critical amino acids within the"N", "P", and "A" domains of the Ca2+ ATPase (SERCA) headpiece.
    Ma H; Lewis D; Xu C; Inesi G; Toyoshima C
    Biochemistry; 2005 Jun; 44(22):8090-100. PubMed ID: 15924428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and characterization of human ecto-ATPase and chimeras with CD39 ecto-apyrase.
    Hicks-Berger CA; Kirley TL
    IUBMB Life; 2000 Jul; 50(1):43-50. PubMed ID: 11087120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of human NTPDase 2 by modification of an intramembrane cysteine by p-chloromercuriphenylsulfonate and oxidative cross-linking of the transmembrane domains.
    Chiang WC; Knowles AF
    Biochemistry; 2008 Aug; 47(33):8775-85. PubMed ID: 18656957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural organization and interactions of transmembrane domains in tetraspanin proteins.
    Kovalenko OV; Metcalf DG; DeGrado WF; Hemler ME
    BMC Struct Biol; 2005 Jun; 5():11. PubMed ID: 15985154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Domain motions and the open-to-closed conformational transition of an enzyme: a normal mode analysis of S-adenosyl-L-homocysteine hydrolase.
    Wang M; Borchardt RT; Schowen RL; Kuczera K
    Biochemistry; 2005 May; 44(19):7228-39. PubMed ID: 15882061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K+-translocating KdpFABC P-type ATPase from Escherichia coli acts as a functional and structural dimer.
    Heitkamp T; Kalinowski R; Böttcher B; Börsch M; Altendorf K; Greie JC
    Biochemistry; 2008 Mar; 47(11):3564-75. PubMed ID: 18298081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmembrane segment 7 of human P-glycoprotein forms part of the drug-binding pocket.
    Loo TW; Bartlett MC; Clarke DM
    Biochem J; 2006 Oct; 399(2):351-9. PubMed ID: 16813563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.