These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 15504462)
1. Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Rizzi L; Petruzzelli G; Poggio G; Guidi GV Chemosphere; 2004 Dec; 57(9):1039-46. PubMed ID: 15504462 [TBL] [Abstract][Full Text] [Related]
2. Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2009 Mar; 74(10):1292-300. PubMed ID: 19118864 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Sci Total Environ; 2008 Nov; 406(1-2):43-56. PubMed ID: 18799197 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. Epelde L; Becerril JM; Mijangos I; Garbisu C J Environ Qual; 2009; 38(5):2041-9. PubMed ID: 19704147 [TBL] [Abstract][Full Text] [Related]
5. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Arienzo M; Adamo P; Cozzolino V Sci Total Environ; 2004 Feb; 319(1-3):13-25. PubMed ID: 14967498 [TBL] [Abstract][Full Text] [Related]
6. In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. Brown S; Chaney R; Hallfrisch J; Ryan JA; Berti WR J Environ Qual; 2004; 33(2):522-31. PubMed ID: 15074803 [TBL] [Abstract][Full Text] [Related]
7. Effect of amendments on phytoavailability and fractionation of copper and zinc in a contaminated soil. Padmavathiamma PK; Li LY Int J Phytoremediation; 2010 Sep; 12(7):697-715. PubMed ID: 21166277 [TBL] [Abstract][Full Text] [Related]
8. Neotyphodium Endophyte Changes Phytoextraction of Zinc in Festuca arundinacea and Lolium perenne. Zamani N; Sabzalian MR; Khoshgoftarmanesh A; Afyuni M Int J Phytoremediation; 2015; 17(1-6):456-63. PubMed ID: 25495936 [TBL] [Abstract][Full Text] [Related]
9. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Yanqun Z; Yuan L; Jianjun C; Haiyan C; Li Q; Schvartz C Environ Int; 2005 Jul; 31(5):755-62. PubMed ID: 15910971 [TBL] [Abstract][Full Text] [Related]
10. Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin. Alvarenga P; Palma P; Gonçalves AP; Baião N; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2008 Aug; 72(11):1774-81. PubMed ID: 18547605 [TBL] [Abstract][Full Text] [Related]
11. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation. Torri S; Lavado R J Hazard Mater; 2009 Jul; 166(2-3):1459-65. PubMed ID: 19200650 [TBL] [Abstract][Full Text] [Related]
12. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
13. Herbaceous vegetation productivity, persistence, and metals uptake on a biosolids-amended mine soil. Evanylo GK; Abaye AO; Dundas C; Zipper CE; Lemus R; Sukkariyah B; Rockett J J Environ Qual; 2005; 34(5):1811-9. PubMed ID: 16151233 [TBL] [Abstract][Full Text] [Related]
14. Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Santibáñez C; Verdugo C; Ginocchio R Sci Total Environ; 2008 May; 395(1):1-10. PubMed ID: 18342913 [TBL] [Abstract][Full Text] [Related]
15. Effect of biosolid incorporation to mollisol soils on Cr, Cu, Ni, Pb, and Zn fractionation, and relationship with their bioavailability. Guerra P; Ahumada I; Carrasco A Chemosphere; 2007 Aug; 68(11):2021-7. PubMed ID: 17418882 [TBL] [Abstract][Full Text] [Related]
16. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Tanhan P; Kruatrachue M; Pokethitiyook P; Chaiyarat R Chemosphere; 2007 Jun; 68(2):323-9. PubMed ID: 17280700 [TBL] [Abstract][Full Text] [Related]
17. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. Li J; Xie ZM; Zhu YG; Naidu R J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871 [TBL] [Abstract][Full Text] [Related]
18. Efficacy of biosolids in assisted phytostabilization of metalliferous acidic sandy soils with five grass species. Kacprzak M; Grobelak A; Grosser A; Prasad MN Int J Phytoremediation; 2014; 16(6):593-608. PubMed ID: 24912245 [TBL] [Abstract][Full Text] [Related]
19. Metal accumulation in wild plants surrounding mining wastes. González RC; González-Chávez MC Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286 [TBL] [Abstract][Full Text] [Related]
20. Nitrate losses, nutrients and heavy metal accumulation from substrates assembled for urban soils reconstruction. Civeira G; Lavado RS J Environ Manage; 2008 Sep; 88(4):1619-23. PubMed ID: 17904270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]