BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 15504473)

  • 21. An evaluation of surfactant foam technology in remediation of contaminated soil.
    Wang S; Mulligan CN
    Chemosphere; 2004 Dec; 57(9):1079-89. PubMed ID: 15504466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel solubilization of phenanthrene using Winsor I microemulsion-based sodium castor oil sulfate.
    Zhao B; Zhu L; Gao Y
    J Hazard Mater; 2005 Mar; 119(1-3):205-11. PubMed ID: 15752867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
    Zhang J; Xue Q; Gao H; Lai H; Wang P
    Microb Cell Fact; 2016 Oct; 15(1):168. PubMed ID: 27716284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of rhamnolipids in solid-state cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils.
    Camilios Neto D; Meira JA; Tiburtius E; Zamora PP; Bugay C; Mitchell DA; Krieger N
    Biotechnol J; 2009 May; 4(5):748-55. PubMed ID: 19452471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of biosurfactants from urban wastes compost in textile dyeing and soil remediation.
    Montoneri E; Boffa V; Savarino P; Tambone F; Adani F; Micheletti L; Gianotti C; Chiono R
    Waste Manag; 2009 Jan; 29(1):383-9. PubMed ID: 18346886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oil removal from used sorbents using a biosurfactant.
    Wei QF; Mather RR; Fotheringham AF
    Bioresour Technol; 2005 Feb; 96(3):331-4. PubMed ID: 15474934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of bioemulsifiers in soil oil bioremediation processes. Future prospects.
    Calvo C; Manzanera M; Silva-Castro GA; Uad I; González-López J
    Sci Total Environ; 2009 Jun; 407(12):3634-40. PubMed ID: 18722001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosurfactant technology for remediation of cadmium and lead contaminated soils.
    Juwarkar AA; Nair A; Dubey KV; Singh SK; Devotta S
    Chemosphere; 2007 Aug; 68(10):1996-2002. PubMed ID: 17399765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous phenanthrene and cadmium removal from contaminated soil by a ligand/biosurfactant solution.
    Lima TM; Procópio LC; Brandão FD; Carvalho AM; Tótola MR; Borges AC
    Biodegradation; 2011 Sep; 22(5):1007-15. PubMed ID: 21416334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization.
    Wattanaphon HT; Kerdsin A; Thammacharoen C; Sangvanich P; Vangnai AS
    J Appl Microbiol; 2008 Aug; 105(2):416-23. PubMed ID: 18298537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.
    Zhao Z; Wong JW
    Environ Technol; 2009 Mar; 30(3):291-9. PubMed ID: 19438062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of bioemulsifier mediated Microbial Enhanced Oil Recovery using sand pack column.
    Suthar H; Hingurao K; Desai A; Nerurkar A
    J Microbiol Methods; 2008 Oct; 75(2):225-30. PubMed ID: 18625271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of salinity on biodegradation of polycyclic aromatic hydrocarbons (PAHs) of heavy crude oil in soil.
    Minai-Tehrani D; Minoui S; Herfatmanesh A
    Bull Environ Contam Toxicol; 2009 Feb; 82(2):179-84. PubMed ID: 18777147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of surfactants to improve the biological degradation of petroleum hydrocarbons in a field site study.
    Martienssen M; Schirmer M
    Environ Technol; 2007 May; 28(5):573-82. PubMed ID: 17615966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioremediation of crude oil-polluted soil--effect of poultry droppings and natural rubber processing sludge application on biodegradation of petroleum hydrocarbons.
    Okieimen CO; Okieimen FE
    Environ Sci; 2005; 12(1):1-8. PubMed ID: 15793556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradability of bacterial surfactants.
    Lima TM; Procópio LC; Brandão FD; Carvalho AM; Tótola MR; Borges AC
    Biodegradation; 2011 Jun; 22(3):585-92. PubMed ID: 21053055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol.
    Saikia RR; Deka S; Deka M; Sarma H
    J Basic Microbiol; 2012 Aug; 52(4):446-57. PubMed ID: 22144225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulating in-soil rhamnolipid production in a bioslurry reactor by limiting nitrogen.
    Hudak AJ; Cassidy DP
    Biotechnol Bioeng; 2004 Dec; 88(7):861-8. PubMed ID: 15538720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surfactants in microbiology and biotechnology: Part 2. Application aspects.
    Singh A; Van Hamme JD; Ward OP
    Biotechnol Adv; 2007; 25(1):99-121. PubMed ID: 17156965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conditions for effective removal of pyrene from an artificially contaminated soil using Pseudomonas aeruginosa 57SJ rhamnolipids.
    Bordas F; Lafrance P; Villemur R
    Environ Pollut; 2005 Nov; 138(1):69-76. PubMed ID: 15905007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.