BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 15504485)

  • 1. Effects of humic substances on the decomposition of 2,4-dichlorophenol by ozone after extraction from water into acetic acid through activated carbon.
    Okawa K; Nakano Y; Nishijima W; Okada M
    Chemosphere; 2004 Dec; 57(9):1231-5. PubMed ID: 15504485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of metal ions on decomposition of chlorinated organic substances by ozonation in acetic acid.
    Okawa K; Tsai TY; Nakano Y; Nishijima W; Okada M
    Chemosphere; 2005 Jan; 58(4):523-7. PubMed ID: 15620744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.
    Ghatbandhe AS; Yenkie MK
    J Environ Sci Eng; 2008 Apr; 50(2):163-8. PubMed ID: 19295102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption capacity of powdered activated carbon for 3,5-dichlorophenol in activated sludge.
    Widjaja T; Miyata T; Nakano Y; Nishijima W; Okada M
    Chemosphere; 2004 Dec; 57(9):1219-24. PubMed ID: 15504483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposition of trichloroethylene and 2,4-dichlorophenol by ozonation in several organic solvents.
    Tsai TY; Okawa K; Nakano Y; Nishijima W; Okada M
    Chemosphere; 2004 Dec; 57(9):1151-5. PubMed ID: 15504474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the apparent rate constants of the degradation of humic substances by ozonation and modeling of the removal of humic substances from the aqueous solutions with neural network.
    Oguz E; Tortum A; Keskinler B
    J Hazard Mater; 2008 Sep; 157(2-3):455-63. PubMed ID: 18289778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposition of two haloacetic acids in water using UV radiation, ozone and advanced oxidation processes.
    Wang K; Guo J; Yang M; Junji H; Deng R
    J Hazard Mater; 2009 Mar; 162(2-3):1243-8. PubMed ID: 18692959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozonation of trichloroethylene in acetic acid solution with soluble and solid humic acid.
    Alcántara-Garduño ME; Okuda T; Nishijima W; Okada M
    J Hazard Mater; 2008 Dec; 160(2-3):662-7. PubMed ID: 18511186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative bioregeneration of granular activated carbon loaded with phenol and 2,4-dichlorophenol.
    Vinitnantharat S; Baral A; Ishibashi Y; Ha SR
    Environ Technol; 2001 Mar; 22(3):339-44. PubMed ID: 11346291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic modeling of bioregeneration of chlorophenol-loaded granular activated carbon in simultaneous adsorption and biodegradation processes.
    Oh WD; Lim PE; Seng CE; Sujari AN
    Bioresour Technol; 2012 Jun; 114():179-87. PubMed ID: 22503192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioregeneration of granular activated carbon in simultaneous adsorption and biodegradation of chlorophenols.
    Oh WD; Lim PE; Seng CE; Sujari AN
    Bioresour Technol; 2011 Oct; 102(20):9497-502. PubMed ID: 21871793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon.
    Nishijima W; Speitel GE
    Chemosphere; 2004 Jul; 56(2):113-9. PubMed ID: 15120556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid.
    Zhang Z; Shen Q; Cissoko N; Wo J; Xu X
    J Hazard Mater; 2010 Oct; 182(1-3):252-8. PubMed ID: 20619538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid.
    Zhang Z; Cissoko N; Wo J; Xu X
    J Hazard Mater; 2009 Jun; 165(1-3):78-86. PubMed ID: 19008044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of granular activated carbon with adsorbed trichloroethylene using wet peroxide oxidation.
    Okawa K; Suzuki K; Takeshita T; Nakano K
    Water Res; 2007 Mar; 41(5):1045-51. PubMed ID: 17224174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of dieldrin from aqueous solution by a novel triolein-embedded composite adsorbent.
    Ru J; Liu H; Qu J; Wang A; Dai R
    J Hazard Mater; 2007 Mar; 141(1):61-9. PubMed ID: 16879914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of 2,4-dichlorophenol toxicity to Pseudomonas putida after oxidative incubation with humic substances and a biomimetic catalyst.
    Hahn D; Cozzolino A; Piccolo A; Armenante PM
    Ecotoxicol Environ Saf; 2007 Mar; 66(3):335-42. PubMed ID: 16616957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and isothermal studies on liquid-phase adsorption of 2,4-dichlorophenol by palm pith carbon.
    Sathishkumar M; Binupriya AR; Kavitha D; Yun SE
    Bioresour Technol; 2007 Mar; 98(4):866-73. PubMed ID: 16678406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of humic acid on pyrene removal from water by polycation-clay mineral composites and activated carbon.
    Radian A; Mishael Y
    Environ Sci Technol; 2012 Jun; 46(11):6228-35. PubMed ID: 22545663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observations of 2,4,6-trichlorophenol degradation by ozone.
    Graham N; Chu W; Lau C
    Chemosphere; 2003 Apr; 51(4):237-43. PubMed ID: 12604075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.