These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 15504485)
1. Effects of humic substances on the decomposition of 2,4-dichlorophenol by ozone after extraction from water into acetic acid through activated carbon. Okawa K; Nakano Y; Nishijima W; Okada M Chemosphere; 2004 Dec; 57(9):1231-5. PubMed ID: 15504485 [TBL] [Abstract][Full Text] [Related]
2. Effect of metal ions on decomposition of chlorinated organic substances by ozonation in acetic acid. Okawa K; Tsai TY; Nakano Y; Nishijima W; Okada M Chemosphere; 2005 Jan; 58(4):523-7. PubMed ID: 15620744 [TBL] [Abstract][Full Text] [Related]
3. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption. Ghatbandhe AS; Yenkie MK J Environ Sci Eng; 2008 Apr; 50(2):163-8. PubMed ID: 19295102 [TBL] [Abstract][Full Text] [Related]
4. Adsorption capacity of powdered activated carbon for 3,5-dichlorophenol in activated sludge. Widjaja T; Miyata T; Nakano Y; Nishijima W; Okada M Chemosphere; 2004 Dec; 57(9):1219-24. PubMed ID: 15504483 [TBL] [Abstract][Full Text] [Related]
5. Decomposition of trichloroethylene and 2,4-dichlorophenol by ozonation in several organic solvents. Tsai TY; Okawa K; Nakano Y; Nishijima W; Okada M Chemosphere; 2004 Dec; 57(9):1151-5. PubMed ID: 15504474 [TBL] [Abstract][Full Text] [Related]
6. Determination of the apparent rate constants of the degradation of humic substances by ozonation and modeling of the removal of humic substances from the aqueous solutions with neural network. Oguz E; Tortum A; Keskinler B J Hazard Mater; 2008 Sep; 157(2-3):455-63. PubMed ID: 18289778 [TBL] [Abstract][Full Text] [Related]
7. Decomposition of two haloacetic acids in water using UV radiation, ozone and advanced oxidation processes. Wang K; Guo J; Yang M; Junji H; Deng R J Hazard Mater; 2009 Mar; 162(2-3):1243-8. PubMed ID: 18692959 [TBL] [Abstract][Full Text] [Related]
8. Ozonation of trichloroethylene in acetic acid solution with soluble and solid humic acid. Alcántara-Garduño ME; Okuda T; Nishijima W; Okada M J Hazard Mater; 2008 Dec; 160(2-3):662-7. PubMed ID: 18511186 [TBL] [Abstract][Full Text] [Related]
9. Quantitative bioregeneration of granular activated carbon loaded with phenol and 2,4-dichlorophenol. Vinitnantharat S; Baral A; Ishibashi Y; Ha SR Environ Technol; 2001 Mar; 22(3):339-44. PubMed ID: 11346291 [TBL] [Abstract][Full Text] [Related]
10. Kinetic modeling of bioregeneration of chlorophenol-loaded granular activated carbon in simultaneous adsorption and biodegradation processes. Oh WD; Lim PE; Seng CE; Sujari AN Bioresour Technol; 2012 Jun; 114():179-87. PubMed ID: 22503192 [TBL] [Abstract][Full Text] [Related]
11. Bioregeneration of granular activated carbon in simultaneous adsorption and biodegradation of chlorophenols. Oh WD; Lim PE; Seng CE; Sujari AN Bioresour Technol; 2011 Oct; 102(20):9497-502. PubMed ID: 21871793 [TBL] [Abstract][Full Text] [Related]
12. Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon. Nishijima W; Speitel GE Chemosphere; 2004 Jul; 56(2):113-9. PubMed ID: 15120556 [TBL] [Abstract][Full Text] [Related]
13. Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid. Zhang Z; Shen Q; Cissoko N; Wo J; Xu X J Hazard Mater; 2010 Oct; 182(1-3):252-8. PubMed ID: 20619538 [TBL] [Abstract][Full Text] [Related]
14. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid. Zhang Z; Cissoko N; Wo J; Xu X J Hazard Mater; 2009 Jun; 165(1-3):78-86. PubMed ID: 19008044 [TBL] [Abstract][Full Text] [Related]
15. Regeneration of granular activated carbon with adsorbed trichloroethylene using wet peroxide oxidation. Okawa K; Suzuki K; Takeshita T; Nakano K Water Res; 2007 Mar; 41(5):1045-51. PubMed ID: 17224174 [TBL] [Abstract][Full Text] [Related]
16. Removal of dieldrin from aqueous solution by a novel triolein-embedded composite adsorbent. Ru J; Liu H; Qu J; Wang A; Dai R J Hazard Mater; 2007 Mar; 141(1):61-9. PubMed ID: 16879914 [TBL] [Abstract][Full Text] [Related]
17. Reduction of 2,4-dichlorophenol toxicity to Pseudomonas putida after oxidative incubation with humic substances and a biomimetic catalyst. Hahn D; Cozzolino A; Piccolo A; Armenante PM Ecotoxicol Environ Saf; 2007 Mar; 66(3):335-42. PubMed ID: 16616957 [TBL] [Abstract][Full Text] [Related]
18. Kinetic and isothermal studies on liquid-phase adsorption of 2,4-dichlorophenol by palm pith carbon. Sathishkumar M; Binupriya AR; Kavitha D; Yun SE Bioresour Technol; 2007 Mar; 98(4):866-73. PubMed ID: 16678406 [TBL] [Abstract][Full Text] [Related]
19. Effect of humic acid on pyrene removal from water by polycation-clay mineral composites and activated carbon. Radian A; Mishael Y Environ Sci Technol; 2012 Jun; 46(11):6228-35. PubMed ID: 22545663 [TBL] [Abstract][Full Text] [Related]
20. Observations of 2,4,6-trichlorophenol degradation by ozone. Graham N; Chu W; Lau C Chemosphere; 2003 Apr; 51(4):237-43. PubMed ID: 12604075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]