These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy. Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431 [TBL] [Abstract][Full Text] [Related]
3. Characterization of dynamic processes using deuterium in uniformly 2H,13C,15N enriched peptides by MAS solid-state NMR. Hologne M; Chen Z; Reif B J Magn Reson; 2006 Mar; 179(1):20-8. PubMed ID: 16289962 [TBL] [Abstract][Full Text] [Related]
4. Quantitative measurement of transverse and longitudinal cross-correlation between 13C-1H dipolar interaction and 13C chemical shift anisotropy: application to a 13C-labeled DNA duplex. Kojima C; Ono A; Kainosho M; James TL J Magn Reson; 1999 Feb; 136(2):169-75. PubMed ID: 9986759 [TBL] [Abstract][Full Text] [Related]
5. Dipolar chemical shift correlation spectroscopy for homonuclear carbon distance measurements in proteins in the solid state: application to structure determination and refinement. Peng X; Libich D; Janik R; Harauz G; Ladizhansky V J Am Chem Soc; 2008 Jan; 130(1):359-69. PubMed ID: 18072776 [TBL] [Abstract][Full Text] [Related]
6. Resolution enhancement in MAS solid-state NMR by application of 13C homonuclear scalar decoupling during acquisition. Chevelkov V; Chen Z; Bermel W; Reif B J Magn Reson; 2005 Jan; 172(1):56-62. PubMed ID: 15589408 [TBL] [Abstract][Full Text] [Related]
7. Sensitivity-enhanced IPAP experiments for measuring one-bond 13C'-13Calpha and 13Calpha-1Halpha residual dipolar couplings in proteins. Ding K; Gronenborn AM J Magn Reson; 2004 Apr; 167(2):253-8. PubMed ID: 15040980 [TBL] [Abstract][Full Text] [Related]
8. A 13C field-cycling NMR relaxometry investigation of proton tunnelling in the hydrogen bond: dynamic isotope effects, the influence of heteronuclear interactions and coupled relaxation. Wu W; Noble DL; Owers-Bradley JR; Horsewill AJ J Magn Reson; 2005 Aug; 175(2):210-21. PubMed ID: 15908247 [TBL] [Abstract][Full Text] [Related]
9. A simple approach to analyzing protein side-chain dynamics from 13C NMR relaxation data. Daragan VA; Mayo KH J Magn Reson; 1998 Feb; 130(2):329-34. PubMed ID: 9500896 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of large elongated RNA by NMR carbon relaxation. Hansen AL; Al-Hashimi HM J Am Chem Soc; 2007 Dec; 129(51):16072-82. PubMed ID: 18047338 [TBL] [Abstract][Full Text] [Related]
11. Ultrafast 2D NMR spectroscopy using a continuous spatial encoding of the spin interactions. Shrot Y; Shapira B; Frydman L J Magn Reson; 2004 Nov; 171(1):163-70. PubMed ID: 15504696 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of uniformly 13C-enriched cell wall polysaccharide of Streptococcus mitis J22 studied by 13C relaxation rates. Xu Q; Bush CA Biochemistry; 1996 Nov; 35(46):14512-20. PubMed ID: 8931547 [TBL] [Abstract][Full Text] [Related]
13. H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. Bermel W; Bertini I; Csizmok V; Felli IC; Pierattelli R; Tompa P J Magn Reson; 2009 Jun; 198(2):275-81. PubMed ID: 19307141 [TBL] [Abstract][Full Text] [Related]
14. Probing methyl dynamics from 13C autocorrelated and cross-correlated relaxation. Zhang X; Sui X; Yang D J Am Chem Soc; 2006 Apr; 128(15):5073-81. PubMed ID: 16608341 [TBL] [Abstract][Full Text] [Related]
15. Measuring 1H-1H and 1H-13C RDCs in methyl groups: example of pulse sequences with numerically optimized coherence transfer schemes. Pervushin K; Vögeli B; Heinz TN; Hünenberger PH J Magn Reson; 2005 Jan; 172(1):36-47. PubMed ID: 15589406 [TBL] [Abstract][Full Text] [Related]
16. High resolution 1H detected 1H,13C correlation spectra in MAS solid-state NMR using deuterated proteins with selective 1H,2H isotopic labeling of methyl groups. Agarwal V; Diehl A; Skrynnikov N; Reif B J Am Chem Soc; 2006 Oct; 128(39):12620-1. PubMed ID: 17002335 [TBL] [Abstract][Full Text] [Related]
17. Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins. Nadaud PS; Helmus JJ; Kall SL; Jaroniec CP J Am Chem Soc; 2009 Jun; 131(23):8108-20. PubMed ID: 19445506 [TBL] [Abstract][Full Text] [Related]
18. Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins through cross-correlated relaxation in NMR. Cisnetti F; Loth K; Pelupessy P; Bodenhausen G Chemphyschem; 2004 Jun; 5(6):807-14. PubMed ID: 15253308 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous measurement of protein one-bond residual dipolar couplings without increased resonance overlap. Vijayan V; Zweckstetter M J Magn Reson; 2005 Jun; 174(2):245-53. PubMed ID: 15862241 [TBL] [Abstract][Full Text] [Related]
20. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. Zhou DH; Shah G; Cormos M; Mullen C; Sandoz D; Rienstra CM J Am Chem Soc; 2007 Sep; 129(38):11791-801. PubMed ID: 17725352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]