BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15504698)

  • 1. Simulation of 13C nuclear magnetic resonance spectra of lignin compounds using principal component analysis and artificial neural networks.
    Jalali-Heravi M; Masoum S; Shahbazikhah P
    J Magn Reson; 2004 Nov; 171(1):176-85. PubMed ID: 15504698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic algorithm as a variable selection procedure for the simulation of 13C nuclear magnetic resonance spectra of flavonoid derivatives using multiple linear regression.
    Ghavami R; Najafi A; Sajadi M; Djannaty F
    J Mol Graph Model; 2008 Sep; 27(2):105-15. PubMed ID: 18450488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of multivariate image analysis in QSPR study of 13C chemical shifts of naphthalene derivatives: a comparative study.
    Garkani-Nejad Z; Poshteh-Shirani M
    Talanta; 2010 Nov; 83(1):225-32. PubMed ID: 21035668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure validation of natural products by quantum-mechanical GIAO calculations of 13C NMR chemical shifts.
    Barone G; Gomez-Paloma L; Duca D; Silvestri A; Riccio R; Bifulco G
    Chemistry; 2002 Jul; 8(14):3233-9. PubMed ID: 12203353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shuffling-adaptive neuro fuzzy inference system and artificial neural networks.
    Jalali-Heravi M; Kyani A
    Chemosphere; 2008 Jun; 72(5):733-40. PubMed ID: 18499226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of multivariate image analysis in modeling (13) C-NMR chemical shifts of mono substituted pyridines.
    Garkani-Nejad Z; Ahmadvand M
    Magn Reson Chem; 2012 Jan; 50(1):7-15. PubMed ID: 22259162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous determination of two active components in compound aspirin tablets using principal component artificial neural networks (PC-ANNs) on NIR spectroscopy.
    Dou Y; Qu N; Wang B; Chi YZ; Ren YL
    Eur J Pharm Sci; 2007 Nov; 32(3):193-9. PubMed ID: 17714922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 13C assignments of the carbon atoms in the aromatic rings of lignin model compounds of the arylglycerol beta-aryl ether type.
    Bardet M; Lundquist K; Parkås J; Robert D; von Unge S
    Magn Reson Chem; 2006 Oct; 44(10):976-9. PubMed ID: 16835899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward more reliable 13C and 1H chemical shift prediction: a systematic comparison of neural-network and least-squares regression based approaches.
    Smurnyy YD; Blinov KA; Churanova TS; Elyashberg ME; Williams AJ
    J Chem Inf Model; 2008 Jan; 48(1):128-34. PubMed ID: 18052244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models of steroid binding based on the minimum deviation of structurally assigned 13C NMR spectra analysis (MiDSASA).
    Beger RD; Harris S; Xie Q
    J Chem Inf Comput Sci; 2004; 44(4):1489-96. PubMed ID: 15272857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-13 CP-MAS nuclear magnetic resonance studies of teas.
    Martínez-Richa A; Joseph-Nathan P
    Solid State Nucl Magn Reson; 2003 May; 23(3):119-35. PubMed ID: 12763559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based predictions of 1H NMR chemical shifts using feed-forward neural networks.
    Binev Y; Aires-de-Sousa J
    J Chem Inf Comput Sci; 2004; 44(3):940-5. PubMed ID: 15154760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum chemical and nuclear magnetic resonance spectral studies on molecular properties and electronic structure of berberine and berberrubine.
    Tripathi AN; Chauhan L; Thankachan PP; Barthwal R
    Magn Reson Chem; 2007 Aug; 45(8):647-55. PubMed ID: 17559166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. G-matrix Fourier transform NOESY-based protocol for high-quality protein structure determination.
    Shen Y; Atreya HS; Liu G; Szyperski T
    J Am Chem Soc; 2005 Jun; 127(25):9085-99. PubMed ID: 15969587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using support vector classification for SAR of fentanyl derivatives.
    Dong N; Lu WC; Chen NY; Zhu YC; Chen KX
    Acta Pharmacol Sin; 2005 Jan; 26(1):107-12. PubMed ID: 15659122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilines and phenols.
    Liu G; Yu J
    Water Res; 2005 May; 39(10):2048-55. PubMed ID: 15913706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release.
    Zheng F; Bayram E; Sumithran SP; Ayers JT; Zhan CG; Schmitt JD; Dwoskin LP; Crooks PA
    Bioorg Med Chem; 2006 May; 14(9):3017-37. PubMed ID: 16431111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-state 13C and 1H spin diffusion NMR analyses of the microfibril structure for bacterial cellulose.
    Masuda K; Adachi M; Hirai A; Yamamoto H; Kaji H; Horii F
    Solid State Nucl Magn Reson; 2003 Jun; 23(4):198-212. PubMed ID: 12787903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical structure and heterogeneity differences of two lignins from loblolly pine as investigated by advanced solid-state NMR spectroscopy.
    Holtman KM; Chen N; Chappell MA; Kadla JF; Xu L; Mao J
    J Agric Food Chem; 2010 Sep; 58(18):9882-92. PubMed ID: 20726583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.