These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 15504898)
1. Structure-function relations of the first and fourth predicted extracellular linkers of the type IIa Na+/Pi cotransporter: I. Cysteine scanning mutagenesis. Ehnes C; Forster IC; Kohler K; Bacconi A; Stange G; Biber J; Murer H J Gen Physiol; 2004 Nov; 124(5):475-88. PubMed ID: 15504898 [TBL] [Abstract][Full Text] [Related]
2. Structure-function relations of the first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter: II. Substrate interaction and voltage dependency of two functionally important sites. Ehnes C; Forster IC; Bacconi A; Kohler K; Biber J; Murer H J Gen Physiol; 2004 Nov; 124(5):489-503. PubMed ID: 15504899 [TBL] [Abstract][Full Text] [Related]
3. Identification of functionally important sites in the first intracellular loop of the NaPi-IIa cotransporter. Köhler K; Forster IC; Stange G; Biber J; Murer H Am J Physiol Renal Physiol; 2002 Apr; 282(4):F687-96. PubMed ID: 11880330 [TBL] [Abstract][Full Text] [Related]
4. Functional characterization of two naturally occurring mutations in the human sodium-phosphate cotransporter type IIa. Virkki LV; Forster IC; Hernando N; Biber J; Murer H J Bone Miner Res; 2003 Dec; 18(12):2135-41. PubMed ID: 14672348 [TBL] [Abstract][Full Text] [Related]
5. Transport function of the renal type IIa Na+/P(i) cotransporter is codetermined by residues in two opposing linker regions. Köhler K; Forster IC; Stange G; Biber J; Murer H J Gen Physiol; 2002 Nov; 120(5):693-705. PubMed ID: 12407080 [TBL] [Abstract][Full Text] [Related]
6. Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa). Virkki LV; Forster IC; Biber J; Murer H Am J Physiol Renal Physiol; 2005 May; 288(5):F969-81. PubMed ID: 15613617 [TBL] [Abstract][Full Text] [Related]
7. Properties of the mutant Ser-460-Cys implicate this site in a functionally important region of the type IIa Na(+)/P(i) cotransporter protein. Lambert G; Forster IC; Stange G; Biber J; Murer H J Gen Physiol; 1999 Nov; 114(5):637-52. PubMed ID: 10532962 [TBL] [Abstract][Full Text] [Related]
8. Functional studies on a split type II Na/P(i)-cotransporter. Ehnes C; Forster IC; Köhler K; Biber J; Murer H J Membr Biol; 2002 Aug; 188(3):227-36. PubMed ID: 12181613 [TBL] [Abstract][Full Text] [Related]
9. Functionally important residues in the predicted 3(rd) transmembrane domain of the type IIa sodium-phosphate co-transporter (NaPi-IIa). Virkki LV; Forster IC; Bacconi A; Biber J; Murer H J Membr Biol; 2005 Aug; 206(3):227-38. PubMed ID: 16456717 [TBL] [Abstract][Full Text] [Related]
11. Modulation of renal type IIa Na+/Pi cotransporter kinetics by the arginine modifier phenylglyoxal. Forster IC; Köhler K; Stange G; Biber J; Murer H J Membr Biol; 2002 May; 187(2):85-96. PubMed ID: 12029367 [TBL] [Abstract][Full Text] [Related]
12. Voltage clamp fluorometric measurements on a type II Na+-coupled Pi cotransporter: shedding light on substrate binding order. Virkki LV; Murer H; Forster IC J Gen Physiol; 2006 May; 127(5):539-55. PubMed ID: 16636203 [TBL] [Abstract][Full Text] [Related]
13. Cysteine residues and the structure of the rat renal proximal tubular type II sodium phosphate cotransporter (rat NaPi IIa). Lambert G; Forster IC; Biber J; Murer H J Membr Biol; 2000 Jul; 176(2):133-41. PubMed ID: 10926678 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a type IIb sodium-phosphate cotransporter from zebrafish (Danio rerio) kidney. Graham C; Nalbant P; Schölermann B; Hentschel H; Kinne RK; Werner A Am J Physiol Renal Physiol; 2003 Apr; 284(4):F727-36. PubMed ID: 12488247 [TBL] [Abstract][Full Text] [Related]
15. Cysteine mutagenesis reveals novel structure-function features within the predicted third extracellular loop of the type IIa Na(+)/P(i) cotransporter. Lambert G; Forster IC; Stange G; Köhler K; Biber J; Murer H J Gen Physiol; 2001 Jun; 117(6):533-46. PubMed ID: 11382804 [TBL] [Abstract][Full Text] [Related]
16. The role of the third extracellular loop of the Na+,K+-ATPase alpha subunit in a luminal gating mechanism. Capendeguy O; Horisberger JD J Physiol; 2005 May; 565(Pt 1):207-18. PubMed ID: 15774534 [TBL] [Abstract][Full Text] [Related]
17. Site-directed mutagenesis and use of bile acid-MTS conjugates to probe the role of cysteines in the human apical sodium-dependent bile acid transporter (SLC10A2). Banerjee A; Ray A; Chang C; Swaan PW Biochemistry; 2005 Jun; 44(24):8908-17. PubMed ID: 15952798 [TBL] [Abstract][Full Text] [Related]
18. Creation of a fully functional cysteine-less variant of osmosensor and proton-osmoprotectant symporter ProP from Escherichia coli and its application to assess the transporter's membrane orientation. Culham DE; Hillar A; Henderson J; Ly A; Vernikovska YI; Racher KI; Boggs JM; Wood JM Biochemistry; 2003 Oct; 42(40):11815-23. PubMed ID: 14529293 [TBL] [Abstract][Full Text] [Related]
19. Evolutionary and experimental analyses of inorganic phosphate transporter PiT family reveals two related signature sequences harboring highly conserved aspartic acids critical for sodium-dependent phosphate transport function of human PiT2. Bøttger P; Pedersen L FEBS J; 2005 Jun; 272(12):3060-74. PubMed ID: 15955065 [TBL] [Abstract][Full Text] [Related]
20. Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis. Klein H; Garneau L; Banderali U; Simoes M; Parent L; Sauvé R J Gen Physiol; 2007 Apr; 129(4):299-315. PubMed ID: 17353352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]