These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 15504902)

  • 1. Developmental regulation of calcium-dependent feedback in Xenopus rods.
    Solessio E; Mani SS; Cuenca N; Engbretson GA; Barlow RB; Knox BE
    J Gen Physiol; 2004 Nov; 124(5):569-85. PubMed ID: 15504902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling.
    Astakhova L; Firsov M; Govardovskii V
    Mol Vis; 2015; 21():244-63. PubMed ID: 25866462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a unified model of vertebrate rod phototransduction.
    Hamer RD; Nicholas SC; Tranchina D; Lamb TD; Jarvinen JL
    Vis Neurosci; 2005; 22(4):417-36. PubMed ID: 16212700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light responses and light adaptation in rat retinal rods at different temperatures.
    Nymark S; Heikkinen H; Haldin C; Donner K; Koskelainen A
    J Physiol; 2005 Sep; 567(Pt 3):923-38. PubMed ID: 16037091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of vertebrate phototransduction: combined quantitative and qualitative modeling of dark- and light-adapted responses in amphibian rods.
    Hamer RD
    Vis Neurosci; 2000; 17(5):679-99. PubMed ID: 11153649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of steady phosphodiesterase activity in the kinetics and sensitivity of the light-adapted salamander rod photoresponse.
    Nikonov S; Lamb TD; Pugh EN
    J Gen Physiol; 2000 Dec; 116(6):795-824. PubMed ID: 11099349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses.
    Hamer RD; Nicholas SC; Tranchina D; Liebman PA; Lamb TD
    J Gen Physiol; 2003 Oct; 122(4):419-44. PubMed ID: 12975449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light responses in rods of vitamin A-deprived Xenopus.
    Solessio E; Umino Y; Cameron DA; Loew E; Engbretson GA; Knox BE; Barlow RB
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4477-86. PubMed ID: 19407019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel Ca2+-feedback mechanism extends the operating range of mammalian rods to brighter light.
    Vinberg F; Turunen TT; Heikkinen H; Pitkänen M; Koskelainen A
    J Gen Physiol; 2015 Oct; 146(4):307-21. PubMed ID: 26415569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of blocking the Na+/K+ ATPase on Ca2+ extrusion and light adaptation in mammalian retinal rods.
    Demontis GC; Ratto GM; Bisti S; Cervetto L
    Biophys J; 1995 Aug; 69(2):439-50. PubMed ID: 8527658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of low AIPL1 expression on phototransduction in rods.
    Makino CL; Wen XH; Michaud N; Peshenko IV; Pawlyk B; Brush RS; Soloviev M; Liu X; Woodruff ML; Calvert PD; Savchenko AB; Anderson RE; Fain GL; Li T; Sandberg MA; Dizhoor AM
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2185-94. PubMed ID: 16639031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of cyclic GMP synthesis in retinal rods.
    Burns ME; Mendez A; Chen J; Baylor DA
    Neuron; 2002 Sep; 36(1):81-91. PubMed ID: 12367508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recoverin regulates light-dependent phosphodiesterase activity in retinal rods.
    Makino CL; Dodd RL; Chen J; Burns ME; Roca A; Simon MI; Baylor DA
    J Gen Physiol; 2004 Jun; 123(6):729-41. PubMed ID: 15173221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postsynaptic calcium feedback between rods and rod bipolar cells in the mouse retina.
    Berntson A; Smith RG; Taylor WR
    Vis Neurosci; 2004; 21(6):913-24. PubMed ID: 15733346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic, spatially nonuniform calcium regulation in frog rods exposed to light.
    McCarthy ST; Younger JP; Owen WG
    J Neurophysiol; 1996 Sep; 76(3):1991-2004. PubMed ID: 8890309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium feedback and sensitivity regulation in primate rods.
    Tamura T; Nakatani K; Yau KW
    J Gen Physiol; 1991 Jul; 98(1):95-130. PubMed ID: 1719127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two temporal phases of light adaptation in retinal rods.
    Calvert PD; Govardovskii VI; Arshavsky VY; Makino CL
    J Gen Physiol; 2002 Feb; 119(2):129-45. PubMed ID: 11815664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Ca++-dependent gain changes in PDE activation in vertebrate rod phototransduction.
    Hamer RD
    Mol Vis; 2000 Dec; 6():265-86. PubMed ID: 11139649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models.
    Korenbrot JI
    Prog Retin Eye Res; 2012 Sep; 31(5):442-66. PubMed ID: 22658984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light adaptation and the rising phase of the flash photocurrent of salamander retinal rods.
    Jones GJ
    J Physiol; 1995 Sep; 487 ( Pt 2)(Pt 2):441-51. PubMed ID: 8558475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.