BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15504976)

  • 1. Leukocyte-derived myeloperoxidase amplifies high-glucose--induced endothelial dysfunction through interaction with high-glucose--stimulated, vascular non--leukocyte-derived reactive oxygen species.
    Zhang C; Yang J; Jennings LK
    Diabetes; 2004 Nov; 53(11):2950-9. PubMed ID: 15504976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.
    Tian R; Ding Y; Peng YY; Lu N
    Biochem Biophys Res Commun; 2017 Mar; 484(3):572-578. PubMed ID: 28131839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of myeloperoxidase with vascular NAD(P)H oxidase-derived reactive oxygen species in vasculature: implications for vascular diseases.
    Zhang C; Yang J; Jacobs JD; Jennings LK
    Am J Physiol Heart Circ Physiol; 2003 Dec; 285(6):H2563-72. PubMed ID: 14613914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quercetin Attenuated Myeloperoxidase-Dependent HOCl Generation and Endothelial Dysfunction in Diabetic Vasculature.
    Tian R; Jin Z; Zhou L; Zeng XP; Lu N
    J Agric Food Chem; 2021 Jan; 69(1):404-413. PubMed ID: 33395297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GYY4137, a hydrogen sulfide donor, protects against endothelial dysfunction in porcine coronary arteries exposed to myeloperoxidase and hypochlorous acid.
    Harper A; Chapel M; Hodgson G; Malinowski K; Yates I; Garle M; Ralevic V
    Vascul Pharmacol; 2023 Oct; 152():107199. PubMed ID: 37500030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myeloperoxidase, a leukocyte-derived vascular NO oxidase.
    Eiserich JP; Baldus S; Brennan ML; Ma W; Zhang C; Tousson A; Castro L; Lusis AJ; Nauseef WM; White CR; Freeman BA
    Science; 2002 Jun; 296(5577):2391-4. PubMed ID: 12089442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myeloperoxidase evokes substantial vasomotor responses in isolated skeletal muscle arterioles of the rat.
    Csató V; Pető A; Fülöp GÁ; Rutkai I; Pásztor ET; Fagyas M; Kalász J; Édes I; Tóth A; Papp Z
    Acta Physiol (Oxf); 2015 May; 214(1):109-23. PubMed ID: 25760778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contractile responses elicited by hydrogen peroxide in aorta from normotensive and hypertensive rats. Endothelial modulation and mechanism involved.
    Rodríguez-Martínez MA; García-Cohen EC; Baena AB; González R; Salaíces M; Marín J
    Br J Pharmacol; 1998 Nov; 125(6):1329-35. PubMed ID: 9863664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the reactive oxygen species hydrogen peroxide and hypochlorite on endothelial nitric oxide production.
    Jaimes EA; Sweeney C; Raij L
    Hypertension; 2001 Oct; 38(4):877-83. PubMed ID: 11641302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitive Effects of Quercetin on Myeloperoxidase-Dependent Hypochlorous Acid Formation and Vascular Endothelial Injury.
    Lu N; Sui Y; Tian R; Peng YY
    J Agric Food Chem; 2018 May; 66(19):4933-4940. PubMed ID: 29708335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ADP-ribose) polymerase inhibition improves endothelial dysfunction induced by reactive oxidant hydrogen peroxide in vitro.
    Radovits T; Lin LN; Zotkina J; Gero D; Szabó C; Karck M; Szabó G
    Eur J Pharmacol; 2007 Jun; 564(1-3):158-66. PubMed ID: 17397824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/O2- imbalance in insulin-resistant rat aorta.
    Shinozaki K; Kashiwagi A; Nishio Y; Okamura T; Yoshida Y; Masada M; Toda N; Kikkawa R
    Diabetes; 1999 Dec; 48(12):2437-45. PubMed ID: 10580434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red blood cells serve as intravascular carriers of myeloperoxidase.
    Adam M; Gajdova S; Kolarova H; Kubala L; Lau D; Geisler A; Ravekes T; Rudolph V; Tsao PS; Blankenberg S; Baldus S; Klinke A
    J Mol Cell Cardiol; 2014 Sep; 74():353-63. PubMed ID: 24976018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH.
    Serpillon S; Floyd BC; Gupte RS; George S; Kozicky M; Neito V; Recchia F; Stanley W; Wolin MS; Gupte SA
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H153-62. PubMed ID: 19429815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidrug resistance associated protein-1 (MRP1) deficiency attenuates endothelial dysfunction in diabetes.
    Neuser J; Fraccarollo D; Wick M; Bauersachs J; Widder JD
    J Diabetes Complications; 2016; 30(4):623-7. PubMed ID: 26908299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel model of inflammatory neointima formation reveals a potential role of myeloperoxidase in neointimal hyperplasia.
    Yang J; Cheng Y; Ji R; Zhang C
    Am J Physiol Heart Circ Physiol; 2006 Dec; 291(6):H3087-93. PubMed ID: 16844918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hypochlorite and hydrogen peroxide on cardiac autonomic receptors and vascular endothelial function.
    Sand C; Peters SL; Pfaffendorf M; van Zwieten PA
    Clin Exp Pharmacol Physiol; 2003 Apr; 30(4):249-53. PubMed ID: 12680842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myeloperoxidase-derived hypochlorous acid promotes ox-LDL-induced senescence of endothelial cells through a mechanism involving β-catenin signaling in hyperlipidemia.
    Liu WQ; Zhang YZ; Wu Y; Zhang JJ; Li TB; Jiang T; Xiong XM; Luo XJ; Ma QL; Peng J
    Biochem Biophys Res Commun; 2015 Nov; 467(4):859-65. PubMed ID: 26474698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eicosapentaenoic acid improves imbalance between vasodilator and vasoconstrictor actions of endothelium-derived factors in mesenteric arteries from rats at chronic stage of type 2 diabetes.
    Matsumoto T; Nakayama N; Ishida K; Kobayashi T; Kamata K
    J Pharmacol Exp Ther; 2009 Apr; 329(1):324-34. PubMed ID: 19164460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased expression of thrombospondin-1 in vessel wall of diabetic Zucker rat.
    Stenina OI; Krukovets I; Wang K; Zhou Z; Forudi F; Penn MS; Topol EJ; Plow EF
    Circulation; 2003 Jul; 107(25):3209-15. PubMed ID: 12810612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.