These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 15505083)

  • 1. Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model.
    Hund TJ; Rudy Y
    Circulation; 2004 Nov; 110(20):3168-74. PubMed ID: 15505083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents.
    Livshitz LM; Rudy Y
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2854-66. PubMed ID: 17277017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium.
    Decker KF; Heijman J; Silva JR; Hund TJ; Rudy Y
    Am J Physiol Heart Circ Physiol; 2009 Apr; 296(4):H1017-26. PubMed ID: 19168720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular correlates of repolarization alternans in cardiac myocytes.
    Wan X; Laurita KR; Pruvot EJ; Rosenbaum DS
    J Mol Cell Cardiol; 2005 Sep; 39(3):419-28. PubMed ID: 16026799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of Ca-calmodulin-dependent protein kinase II on rabbit ventricular myocyte ion currents and action potentials.
    Grandi E; Puglisi JL; Wagner S; Maier LS; Severi S; Bers DM
    Biophys J; 2007 Dec; 93(11):3835-47. PubMed ID: 17704163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calmodulin kinase II inhibition shortens action potential duration by upregulation of K+ currents.
    Li J; Marionneau C; Zhang R; Shah V; Hell JW; Nerbonne JM; Anderson ME
    Circ Res; 2006 Nov; 99(10):1092-9. PubMed ID: 17038644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms underlying rate-dependent remodeling of transient outward potassium current in canine ventricular myocytes.
    Xiao L; Coutu P; Villeneuve LR; Tadevosyan A; Maguy A; Le Bouter S; Allen BG; Nattel S
    Circ Res; 2008 Sep; 103(7):733-42. PubMed ID: 18723449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nitric oxide in Ca2+ sensitivity of the slowly activating delayed rectifier K+ current in cardiac myocytes.
    Bai CX; Namekata I; Kurokawa J; Tanaka H; Shigenobu K; Furukawa T
    Circ Res; 2005 Jan; 96(1):64-72. PubMed ID: 15569827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling.
    Goldhaber JI; Xie LH; Duong T; Motter C; Khuu K; Weiss JN
    Circ Res; 2005 Mar; 96(4):459-66. PubMed ID: 15662034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Investigation of the Arrhythmogenic Role of Oxidized CaMKII in the Heart.
    Foteinou PT; Greenstein JL; Winslow RL
    Biophys J; 2015 Aug; 109(4):838-49. PubMed ID: 26287635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias.
    Gonano LA; Sepúlveda M; Rico Y; Kaetzel M; Valverde CA; Dedman J; Mattiazzi A; Vila Petroff M
    Circ Arrhythm Electrophysiol; 2011 Dec; 4(6):947-57. PubMed ID: 22009705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure.
    Ai X; Curran JW; Shannon TR; Bers DM; Pogwizd SM
    Circ Res; 2005 Dec; 97(12):1314-22. PubMed ID: 16269653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes.
    Kohlhaas M; Zhang T; Seidler T; Zibrova D; Dybkova N; Steen A; Wagner S; Chen L; Brown JH; Bers DM; Maier LS
    Circ Res; 2006 Feb; 98(2):235-44. PubMed ID: 16373600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic bases for electrical remodeling of the canine cardiac ventricle.
    Jeyaraj D; Wan X; Ficker E; Stelzer JE; Deschenes I; Liu H; Wilson LD; Decker KF; Said TH; Jain MK; Rudy Y; Rosenbaum DS
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(3):H410-9. PubMed ID: 23709598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical model of the neonatal mouse ventricular action potential.
    Wang LJ; Sobie EA
    Am J Physiol Heart Circ Physiol; 2008 Jun; 294(6):H2565-75. PubMed ID: 18408122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanisms of calcium cycling and action potential dynamics in cardiac alternans.
    Kanaporis G; Blatter LA
    Circ Res; 2015 Feb; 116(5):846-56. PubMed ID: 25532796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release.
    Maier LS; Zhang T; Chen L; DeSantiago J; Brown JH; Bers DM
    Circ Res; 2003 May; 92(8):904-11. PubMed ID: 12676813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical mechanisms of phase-2 early afterdepolarizations in human ventricular myocytes: insights from bifurcation analyses of two mathematical models.
    Kurata Y; Tsumoto K; Hayashi K; Hisatome I; Tanida M; Kuda Y; Shibamoto T
    Am J Physiol Heart Circ Physiol; 2017 Jan; 312(1):H106-H127. PubMed ID: 27836893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca
    Onal B; Gratz D; Hund TJ
    Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1227-H1239. PubMed ID: 28842436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation.
    O'Hara T; Virág L; Varró A; Rudy Y
    PLoS Comput Biol; 2011 May; 7(5):e1002061. PubMed ID: 21637795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.