BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15505454)

  • 21. Direct actions of cannabinoids on synaptic transmission in the nucleus accumbens: a comparison with opioids.
    Hoffman AF; Lupica CR
    J Neurophysiol; 2001 Jan; 85(1):72-83. PubMed ID: 11152707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphine-3beta-D-glucuronide suppresses inhibitory synaptic transmission in rat substantia gelatinosa.
    Moran TD; Smith PA
    J Pharmacol Exp Ther; 2002 Aug; 302(2):568-76. PubMed ID: 12130717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct populations of spinal cord lamina II interneurons expressing G-protein-gated potassium channels.
    Marker CL; Luján R; Colón J; Wickman K
    J Neurosci; 2006 Nov; 26(47):12251-9. PubMed ID: 17122050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Postsynaptic signaling via the [mu]-opioid receptor: responses of dorsal horn neurons to exogenous opioids and noxious stimulation.
    Trafton JA; Abbadie C; Marek K; Basbaum AI
    J Neurosci; 2000 Dec; 20(23):8578-84. PubMed ID: 11102461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of mu- and delta-opioid receptors causes presynaptic inhibition of glutamatergic excitation in neocortical neurons.
    Ostermeier AM; Schlösser B; Schwender D; Sutor B
    Anesthesiology; 2000 Oct; 93(4):1053-63. PubMed ID: 11020761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels.
    Ibrahim N; Bosch MA; Smart JL; Qiu J; Rubinstein M; Rønnekleiv OK; Low MJ; Kelly MJ
    Endocrinology; 2003 Apr; 144(4):1331-40. PubMed ID: 12639916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of the {mu} opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala.
    Finnegan TF; Chen SR; Pan HL
    J Pharmacol Exp Ther; 2005 Feb; 312(2):441-8. PubMed ID: 15388784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adenosine contributes to mu-opioid synaptic inhibition in rat substantia gelatinosa in vitro.
    Ackley MA; Baldwin SA; King AE
    Neurosci Lett; 2005 Mar; 376(2):102-6. PubMed ID: 15698929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. mu-Opioid peptides inhibit thalamic neurons.
    Brunton J; Charpak S
    J Neurosci; 1998 Mar; 18(5):1671-8. PubMed ID: 9464992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two distinct forms of desensitization of G-protein coupled inwardly rectifying potassium currents evoked by alkaloid and peptide mu-opioid receptor agonists.
    Blanchet C; Sollini M; Lüscher C
    Mol Cell Neurosci; 2003 Oct; 24(2):517-23. PubMed ID: 14572471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Opioidergic modulation of voltage-activated K+ currents in magnocellular neurons of the supraoptic nucleus in rat.
    Müller W; Hallermann S; Swandulla D
    J Neurophysiol; 1999 Apr; 81(4):1617-25. PubMed ID: 10200198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GABA(B) receptor-mediated presynaptic inhibition of glycinergic transmission onto substantia gelatinosa neurons in the rat spinal cord.
    Choi IS; Cho JH; Jeong SG; Hong JS; Kim SJ; Kim J; Lee MG; Choi BJ; Jang IS
    Pain; 2008 Aug; 138(2):330-342. PubMed ID: 18258370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of intrinsic and agonist-activated conductances in determining the firing patterns of preoptic area neurons in the guinea pig.
    Wagner EJ; Reyes-Vazquez C; Ronnekleiv OK; Kelly MJ
    Brain Res; 2000 Oct; 879(1-2):29-41. PubMed ID: 11011003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat.
    Santos SF; Rebelo S; Derkach VA; Safronov BV
    J Physiol; 2007 May; 581(Pt 1):241-54. PubMed ID: 17331995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The presynaptic modulation of corticostriatal afferents by mu-opioids is mediated by K+ conductances.
    Barral J; Mendoza E; Galarraga E; Bargas J
    Eur J Pharmacol; 2003 Feb; 462(1-3):91-8. PubMed ID: 12591100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A functional link between T-type calcium channels and mu-opioid receptor expression in adult primary sensory neurons.
    Wu ZZ; Cai YQ; Pan HL
    J Neurochem; 2009 May; 109(3):867-78. PubMed ID: 19250340
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Presynaptic actions of opioid receptor agonists in ventromedial hypothalamic neurons in estrogen- and oil-treated female mice.
    Devidze N; Zhang Q; Zhou J; Lee AW; Pataky S; Kow LM; Pfaff DW
    Neuroscience; 2008 Apr; 152(4):942-9. PubMed ID: 18343595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct inhibition of substantia gelatinosa neurones in the rat spinal cord by activation of dopamine D2-like receptors.
    Tamae A; Nakatsuka T; Koga K; Kato G; Furue H; Katafuchi T; Yoshimura M
    J Physiol; 2005 Oct; 568(Pt 1):243-53. PubMed ID: 15975975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of mu-opioid receptors inhibits synaptic inputs to spinally projecting rostral ventromedial medulla neurons.
    Finnegan TF; Li DP; Chen SR; Pan HL
    J Pharmacol Exp Ther; 2004 May; 309(2):476-83. PubMed ID: 14724227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interference of biocytin with opioid-evoked hyperpolarization and membrane properties of rat spinal substantia gelatinosa neurons.
    Eckert WA; Willcockson HH; Light AR
    Neurosci Lett; 2001 Jan; 297(2):117-20. PubMed ID: 11121884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.