BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 1550574)

  • 1. Inefficient in vitro splicing of the regulatory intron of the L1 ribosomal protein gene of X.laevis depends on suboptimal splice site sequences.
    Caffarelli E; Fragapane P; Bozzoni I
    Biochem Biophys Res Commun; 1992 Mar; 183(2):680-7. PubMed ID: 1550574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the sequences responsible for the splicing phenotype of the regulatory intron of the L1 ribosomal protein gene of Xenopus laevis.
    Fragapane P; Caffarelli E; Lener M; Prislei S; Santoro B; Bozzoni I
    Mol Cell Biol; 1992 Mar; 12(3):1117-25. PubMed ID: 1545793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanisms controlling ribosomal protein L1 pre-mRNA splicing are maintained in evolution and rely on conserved intron sequences.
    Prislei S; Sperandio S; Fragapane P; Caffarelli E; Presutti C; Bozzoni I
    Nucleic Acids Res; 1992 Sep; 20(17):4473-9. PubMed ID: 1408749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Splicing control of the L1 ribosomal protein gene of X.laevis: structural similarities between sequences present in the regulatory intron and in the 28S ribosomal RNA.
    Fragapane P; Caffarelli E; Santoro B; Sperandio S; Lener M; Bozzoni I
    Mol Biol Rep; 1990; 14(2-3):111-2. PubMed ID: 2362566
    [No Abstract]   [Full Text] [Related]  

  • 5. RNA-protein interactions in the nuclei of Xenopus oocytes: complex formation and processing activity on the regulatory intron of ribosomal protein gene L1.
    Santoro B; De Gregorio E; Caffarelli E; Bozzoni I
    Mol Cell Biol; 1994 Oct; 14(10):6975-82. PubMed ID: 7935414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for autogenous regulation of Xenopus laevis ribosomal protein L1 synthesis at the splicing level.
    Gultyaev AP; Shestopalov BV
    FEBS Lett; 1988 May; 232(1):9-11. PubMed ID: 3366251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species-specific signals for the splicing of a short Drosophila intron in vitro.
    Guo M; Lo PC; Mount SM
    Mol Cell Biol; 1993 Feb; 13(2):1104-18. PubMed ID: 8423778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The accumulation of mature RNA for the Xenopus laevis ribosomal protein L1 is controlled at the level of splicing and turnover of the precursor RNA.
    Caffarelli E; Fragapane P; Gehring C; Bozzoni I
    EMBO J; 1987 Nov; 6(11):3493-8. PubMed ID: 2448138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Branchpoint selection in the splicing of U12-dependent introns in vitro.
    McConnell TS; Cho SJ; Frilander MJ; Steitz JA
    RNA; 2002 May; 8(5):579-86. PubMed ID: 12022225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. hnRNP H1 and intronic G runs in the splicing control of the human rpL3 gene.
    Russo A; Siciliano G; Catillo M; Giangrande C; Amoresano A; Pucci P; Pietropaolo C; Russo G
    Biochim Biophys Acta; 2010; 1799(5-6):419-28. PubMed ID: 20100605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementarity of conserved sequence elements present in 28S ribosomal RNA and in ribosomal protein genes of Xenopus laevis and Xenopus tropicalis.
    Cutruzzolá F; Loreni F; Bozzoni I
    Gene; 1986; 49(3):371-6. PubMed ID: 3569921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T cell receptor-beta mRNA splicing: regulation of unusual splicing intermediates.
    Qian L; Theodor L; Carter M; Vu MN; Sasaki AW; Wilkinson MF
    Mol Cell Biol; 1993 Mar; 13(3):1686-96. PubMed ID: 8441406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of two Xenopus laevis ribosomal protein genes in injected frog oocytes. A specific splicing block interferes with the L1 RNA maturation.
    Bozzoni I; Fragapane P; Annesi F; Pierandrei-Amaldi P; Amaldi F; Beccari E
    J Mol Biol; 1984 Dec; 180(4):987-1005. PubMed ID: 6084725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse splicing of a discontinuous pre-mRNA intron generates a circular exon in a HeLa cell nuclear extract.
    Braun S; Domdey H; Wiebauer K
    Nucleic Acids Res; 1996 Nov; 24(21):4152-7. PubMed ID: 8932365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different forms of U15 snoRNA are encoded in the introns of the ribosomal protein S1 gene of Xenopus laevis.
    Pellizzoni L; Crosio C; Campioni N; Loreni F; Pierandrei-Amaldi P
    Nucleic Acids Res; 1994 Nov; 22(22):4607-13. PubMed ID: 7984408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of two distinct intron elements involved in alternative splicing of beta-tropomyosin pre-mRNA.
    Helfman DM; Roscigno RF; Mulligan GJ; Finn LA; Weber KS
    Genes Dev; 1990 Jan; 4(1):98-110. PubMed ID: 2307372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate in vitro splicing of two pre-mRNA plant introns in a HeLa cell nuclear extract.
    Brown JW; Feix G; Frendewey D
    EMBO J; 1986 Nov; 5(11):2749-58. PubMed ID: 2431897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro study of processing of the intron-encoded U16 small nucleolar RNA in Xenopus laevis.
    Caffarelli E; Arese M; Santoro B; Fragapane P; Bozzoni I
    Mol Cell Biol; 1994 May; 14(5):2966-74. PubMed ID: 7513048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 62,000 molecular weight spliceosome protein crosslinks to the intron polypyrimidine tract.
    Wang J; Pederson T
    Nucleic Acids Res; 1990 Oct; 18(20):5995-6001. PubMed ID: 2172924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA sequences upstream of the 3' splice site repress splicing of mutantyeast ACT1 introns.
    Kivens W; Siliciano PG
    RNA; 1996 May; 2(5):492-505. PubMed ID: 8665416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.