BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 1550574)

  • 61. The genomic structure of two protein kinase CK2alpha genes of Xenopus laevis and features of the putative promoter region.
    Wilhelm V; Neckelman G; Allende JE; Allende CC
    Mol Cell Biochem; 2001 Nov; 227(1-2):175-83. PubMed ID: 11827169
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Human ribosomal protein S13 regulates expression of its own gene at the splicing step by a feedback mechanism.
    Malygin AA; Parakhnevitch NM; Ivanov AV; Eperon IC; Karpova GG
    Nucleic Acids Res; 2007; 35(19):6414-23. PubMed ID: 17881366
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Expression of the gene for mitoribosomal protein S12 is controlled in human cells at the levels of transcription, RNA splicing, and translation.
    Mariottini P; Shah ZH; Toivonen JM; Bagni C; Spelbrink JN; Amaldi F; Jacobs HT
    J Biol Chem; 1999 Nov; 274(45):31853-62. PubMed ID: 10542210
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Aspects of regulation of ribosomal protein synthesis in Xenopus laevis. Review.
    Pierandrei-Amaldi P; Amaldi F
    Genetica; 1994; 94(2-3):181-93. PubMed ID: 7896138
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Preparation of splicing competent nuclear extracts.
    Webb CH; Hertel KJ
    Methods Mol Biol; 2014; 1126():117-21. PubMed ID: 24549659
    [TBL] [Abstract][Full Text] [Related]  

  • 66. RNA Sequencing for Elucidating an Intronic Variant of Uncertain Significance (
    Gu H; Hong J; Lee W; Kim SB; Chun S; Min WK
    Ann Lab Med; 2022 May; 42(3):376-379. PubMed ID: 34907111
    [No Abstract]   [Full Text] [Related]  

  • 67. Identification of small-molecule inhibitors of the XendoU endoribonucleases family.
    Ragno R; Gioia U; Laneve P; Bozzoni I; Mai A; Caffarelli E
    ChemMedChem; 2011 Oct; 6(10):1797-805. PubMed ID: 21805647
    [TBL] [Abstract][Full Text] [Related]  

  • 68. U12 type introns were lost at multiple occasions during evolution.
    Bartschat S; Samuelsson T
    BMC Genomics; 2010 Feb; 11():106. PubMed ID: 20149226
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The splicing of U12-type introns can be a rate-limiting step in gene expression.
    Patel AA; McCarthy M; Steitz JA
    EMBO J; 2002 Jul; 21(14):3804-15. PubMed ID: 12110592
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA.
    Caffarelli E; Fatica A; Prislei S; De Gregorio E; Fragapane P; Bozzoni I
    EMBO J; 1996 Mar; 15(5):1121-31. PubMed ID: 8605882
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D.
    Watkins NJ; Leverette RD; Xia L; Andrews MT; Maxwell ES
    RNA; 1996 Feb; 2(2):118-33. PubMed ID: 8601279
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by processing of the pre-mRNA.
    Fragapane P; Prislei S; Michienzi A; Caffarelli E; Bozzoni I
    EMBO J; 1993 Jul; 12(7):2921-8. PubMed ID: 8335006
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In vitro study of processing of the intron-encoded U16 small nucleolar RNA in Xenopus laevis.
    Caffarelli E; Arese M; Santoro B; Fragapane P; Bozzoni I
    Mol Cell Biol; 1994 May; 14(5):2966-74. PubMed ID: 7513048
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Inefficient in vitro splicing of the regulatory intron of the L1 ribosomal protein gene of X.laevis depends on suboptimal splice site sequences.
    Caffarelli E; Fragapane P; Bozzoni I
    Biochem Biophys Res Commun; 1992 Mar; 183(2):680-7. PubMed ID: 1550574
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Identification of the sequences responsible for the splicing phenotype of the regulatory intron of the L1 ribosomal protein gene of Xenopus laevis.
    Fragapane P; Caffarelli E; Lener M; Prislei S; Santoro B; Bozzoni I
    Mol Cell Biol; 1992 Mar; 12(3):1117-25. PubMed ID: 1545793
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The mechanisms controlling ribosomal protein L1 pre-mRNA splicing are maintained in evolution and rely on conserved intron sequences.
    Prislei S; Sperandio S; Fragapane P; Caffarelli E; Presutti C; Bozzoni I
    Nucleic Acids Res; 1992 Sep; 20(17):4473-9. PubMed ID: 1408749
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Splicing control of the L1 ribosomal protein gene of X.laevis: structural similarities between sequences present in the regulatory intron and in the 28S ribosomal RNA.
    Fragapane P; Caffarelli E; Santoro B; Sperandio S; Lener M; Bozzoni I
    Mol Biol Rep; 1990; 14(2-3):111-2. PubMed ID: 2362566
    [No Abstract]   [Full Text] [Related]  

  • 78. Structure and expression of ribosomal protein genes in Xenopus laevis.
    Amaldi F; Camacho-Vanegas O; Cardinall B; Cecconi F; Crosio C; Loreni F; Mariottini P; Pellizzoni L; Pierandrei-Amaldi P
    Biochem Cell Biol; 1995; 73(11-12):969-77. PubMed ID: 8722012
    [TBL] [Abstract][Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.