These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15505971)

  • 21. Bias in conditional inference: implications for mental models and mental logic.
    Evans JS; Clibbens J; Rood B
    Q J Exp Psychol A; 1995 Aug; 48(3):644-70. PubMed ID: 7568994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deduction electrified: ERPs elicited by the processing of words in conditional arguments.
    Bonnefond M; Henst JB
    Brain Lang; 2013 Mar; 124(3):244-56. PubMed ID: 23395713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Suppression of valid inferences: syntactic views, mental models, and relative salience.
    Chan D; Chua F
    Cognition; 1994 Dec; 53(3):217-38. PubMed ID: 7842634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New Evidence for Distinct Right and Left Brain Systems for Deductive versus Probabilistic Reasoning.
    Parsons LM; Osherson D
    Cereb Cortex; 2001 Oct; 11(10):954-65. PubMed ID: 11549618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The neural basis of conditional reasoning: an event-related potential study.
    Qiu J; Li H; Huang X; Zhang F; Chen A; Luo Y; Zhang Q; Yuan H
    Neuropsychologia; 2007 Apr; 45(7):1533-9. PubMed ID: 17194466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beyond hemispheric dominance: brain regions underlying the joint lateralization of language and arithmetic to the left hemisphere.
    Pinel P; Dehaene S
    J Cogn Neurosci; 2010 Jan; 22(1):48-66. PubMed ID: 19199416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain Functional Networks Involved in Different Premise Order in Conditional Reasoning: A Dynamic Causal Model Study.
    Wang L; Zhang M; Zou F; Wu X; Wang Y; Chen J
    J Cogn Neurosci; 2022 Jul; 34(8):1416-1428. PubMed ID: 35579988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study.
    Kaufmann L; Koppelstaetter F; Delazer M; Siedentopf C; Rhomberg P; Golaszewski S; Felber S; Ischebeck A
    Neuroimage; 2005 Apr; 25(3):888-98. PubMed ID: 15808989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissociating response conflict from numerical magnitude processing in the brain: an event-related fMRI study.
    Ansari D; Fugelsang JA; Dhital B; Venkatraman V
    Neuroimage; 2006 Aug; 32(2):799-805. PubMed ID: 16731007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transfer effects of abacus training on transient and sustained brain activation in the frontal-parietal network.
    Zhou H; Geng F; Wang Y; Wang C; Hu Y; Chen F
    Neuroscience; 2019 Jun; 408():135-146. PubMed ID: 30981864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning by strategies and learning by drill--evidence from an fMRI study.
    Delazer M; Ischebeck A; Domahs F; Zamarian L; Koppelstaetter F; Siedentopf CM; Kaufmann L; Benke T; Felber S
    Neuroimage; 2005 Apr; 25(3):838-49. PubMed ID: 15808984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissociable concurrent activity of lateral and medial frontal lobe during negative feedback processing.
    Jimura K; Konishi S; Miyashita Y
    Neuroimage; 2004 Aug; 22(4):1578-86. PubMed ID: 15275914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task.
    Coull JT; Frackowiak RS; Frith CD
    Neuropsychologia; 1998 Dec; 36(12):1325-34. PubMed ID: 9863686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Propositional reasoning: the differential contribution of "rules" to the difficulty of complex reasoning problems.
    Rijmen F; De Boeck P
    Mem Cognit; 2001 Jan; 29(1):165-75. PubMed ID: 11277459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for quantitative domain dominance for verbal and spatial working memory in frontal and parietal cortex.
    Walter H; Bretschneider V; Grön G; Zurowski B; Wunderlich AP; Tomczak R; Spitzer M
    Cortex; 2003; 39(4-5):897-911. PubMed ID: 14584558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct areas in parietal cortex involved in long-term and short-term action planning: a PET investigation.
    Ruby P; Sirigu A; Decety J
    Cortex; 2002 Jun; 38(3):321-39. PubMed ID: 12146659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trend detection via temporal difference model predicts inferior prefrontal cortex activation during acquisition of advantageous action selection.
    Paulus MP; Feinstein JS; Tapert SF; Liu TT
    Neuroimage; 2004 Feb; 21(2):733-43. PubMed ID: 14980576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The prepared mind: neural activity prior to problem presentation predicts subsequent solution by sudden insight.
    Kounios J; Frymiare JL; Bowden EM; Fleck JI; Subramaniam K; Parrish TB; Jung-Beeman M
    Psychol Sci; 2006 Oct; 17(10):882-90. PubMed ID: 17100789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hemispheric differences in strong versus weak semantic priming: evidence from event-related brain potentials.
    Frishkoff GA
    Brain Lang; 2007 Jan; 100(1):23-43. PubMed ID: 16908058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Where left becomes right: a magnetoencephalographic study of sensorimotor transformation for antisaccades.
    Moon SY; Barton JJ; Mikulski S; Polli FE; Cain MS; Vangel M; Hämäläinen MS; Manoach DS
    Neuroimage; 2007 Jul; 36(4):1313-23. PubMed ID: 17537647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.