These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 15506181)
21. Impact of land use and physicochemical settings on aqueous methylmercury levels in the Mobile-Alabama River System. Bonzongo JC; Lyons WB Ambio; 2004 Aug; 33(6):328-33. PubMed ID: 15387068 [TBL] [Abstract][Full Text] [Related]
22. Snowmelt sources of methylmercury to high arctic ecosystems. Loseto LL; Lean DR; Siciliano SD Environ Sci Technol; 2004 Jun; 38(11):3004-10. PubMed ID: 15224728 [TBL] [Abstract][Full Text] [Related]
23. Total and methylmercury in a Brazilian estuary, Rio de Janeiro. Kehrig HA; Costa M; Moreira I; Malm O Mar Pollut Bull; 2002 Oct; 44(10):1018-23. PubMed ID: 12474961 [TBL] [Abstract][Full Text] [Related]
24. Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils. Braaten HFV; de Wit HA Environ Pollut; 2016 Nov; 218():140-149. PubMed ID: 27552047 [TBL] [Abstract][Full Text] [Related]
25. Effects of damming on the distribution and methylation of mercury in Wujiang River, Southwest China. Zhao L; Guo Y; Meng B; Yao H; Feng X Chemosphere; 2017 Oct; 185():780-788. PubMed ID: 28734214 [TBL] [Abstract][Full Text] [Related]
26. [Speciation and spatial-temporal variation of mercury in the Xiaolangdi Reservoir]. Cheng L; Mao YX; Ma BJ; Wang M Huan Jing Ke Xue; 2015 Jan; 36(1):121-9. PubMed ID: 25898655 [TBL] [Abstract][Full Text] [Related]
27. Spatial and temporal variation of total mercury and methylmercury in lacustrine wetland in Korea. Kim MK; Lee YM; Zoh KD Environ Sci Pollut Res Int; 2015 May; 22(9):6578-89. PubMed ID: 25758419 [TBL] [Abstract][Full Text] [Related]
28. Mercury dynamics of a temperate forested wetland. Galloway ME; Branfireun BA Sci Total Environ; 2004 Jun; 325(1-3):239-54. PubMed ID: 15144792 [TBL] [Abstract][Full Text] [Related]
29. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania. Ikingura JR; Akagi H; Mujumba J; Messo C J Environ Manage; 2006 Oct; 81(2):167-73. PubMed ID: 16782263 [TBL] [Abstract][Full Text] [Related]
30. Sediment and porewater profiles and fluxes of mercury and methylmercury in a small seepage lake in northern Minnesota. Hines NA; Brezonik PL; Engstrom DR Environ Sci Technol; 2004 Dec; 38(24):6610-7. PubMed ID: 15669319 [TBL] [Abstract][Full Text] [Related]
31. Methylmercury Dynamics in Upper Sacramento Valley Rice Fields with Low Background Soil Mercury Levels. Tanner KC; Windham-Myers L; Marvin-DiPasquale M; Fleck JA; Tate KW; Linquist BA J Environ Qual; 2018 Jul; 47(4):830-838. PubMed ID: 30025065 [TBL] [Abstract][Full Text] [Related]
32. Sulfate addition increases methylmercury production in an experimental wetland. Jeremiason JD; Engstrom DR; Swain EB; Nater EA; Johnson BM; Almendinger JE; Monson BA; Kolka RK Environ Sci Technol; 2006 Jun; 40(12):3800-6. PubMed ID: 16830545 [TBL] [Abstract][Full Text] [Related]
34. Using the INCA-Hg model of mercury cycling to simulate total and methyl mercury concentrations in forest streams and catchments. Futter MN; Poste AE; Butterfield D; Dillon PJ; Whitehead PG; Dastoor AP; Lean DR Sci Total Environ; 2012 May; 424():219-31. PubMed ID: 22444066 [TBL] [Abstract][Full Text] [Related]
35. [Spatial and temporal distribution of mercury in water of a small typical agricultural watershed in the Three Gorges Reservoir region]. Wang Y; Zhao Z; Mu ZJ; Wang DY Huan Jing Ke Xue; 2014 Nov; 35(11):4095-102. PubMed ID: 25639081 [TBL] [Abstract][Full Text] [Related]
36. The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir: a case study from Hongfeng Reservoir, Guizhou, China. He T; Feng X; Guo Y; Qiu G; Li Z; Liang L; Lu J Environ Pollut; 2008 Jul; 154(1):56-67. PubMed ID: 18158204 [TBL] [Abstract][Full Text] [Related]
37. A comparison of results from a hydrologic transport model (HSPF) with distributions of sulfate and mercury in a mine-impacted watershed in northeastern Minnesota. Berndt ME; Rutelonis W; Regan CP J Environ Manage; 2016 Oct; 181():74-79. PubMed ID: 27318875 [TBL] [Abstract][Full Text] [Related]
38. Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients. Roy V; Amyot M; Carignan R Environ Sci Technol; 2009 Aug; 43(15):5605-11. PubMed ID: 19731651 [TBL] [Abstract][Full Text] [Related]
39. Flood hydrology and methylmercury availability in coastal plain rivers. Bradley PM; Journey CA; Chapelle FH; Lowery MA; Conrads PA Environ Sci Technol; 2010 Dec; 44(24):9285-90. PubMed ID: 21080644 [TBL] [Abstract][Full Text] [Related]
40. Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California. Domagalski JL; Alpers CN; Slotton DG; Suchanek TH; Ayers SM Sci Total Environ; 2004 Jul; 327(1-3):215-37. PubMed ID: 15172583 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]