BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15506191)

  • 21. Effect of bromide ions on genotoxicity of halogenated by-products from chlorination of humic acid in water.
    Nobukawa T; Sanukida S
    Water Res; 2001 Dec; 35(18):4293-8. PubMed ID: 11763030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling the formation of chlorination by-products in river waters with different quality.
    Nikolaou AD; Golfinopoulos SK; Arhonditsis GB; Kolovoyiannis V; Lekkas TD
    Chemosphere; 2004 Apr; 55(3):409-20. PubMed ID: 14987940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater.
    Szczuka A; Parker KM; Harvey C; Hayes E; Vengosh A; Mitch WA
    Water Res; 2017 Oct; 122():633-644. PubMed ID: 28646800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of haloacetic acids from different organic precursors in swimming pool water during chlorination.
    Wang J; Gong T; Xian Q
    Chemosphere; 2020 May; 247():125793. PubMed ID: 31931310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trihalomethane formation by chlorination of ammonium- and bromide-containing groundwater in water supplies of Hanoi, Vietnam.
    Duong HA; Berg M; Hoang MH; Pham HV; Gallard H; Giger W; von Gunten U
    Water Res; 2003 Jul; 37(13):3242-52. PubMed ID: 14509712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DBP levels in chlorinated drinking water: effect of humic substances.
    Nikolaou AD; Golfinopoulos SK; Lekkas TD; Kostopoulou MN
    Environ Monit Assess; 2004; 93(1-3):301-19. PubMed ID: 15074622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of haloacetic acids during monochloramination.
    Qi Y; Shang C; Lo IM
    Water Res; 2004 May; 38(9):2374-82. PubMed ID: 15142799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbohydrates as trihalomethanes precursors. Influence of pH and the presence of Cl(-) and Br(-) on trihalomethane formation potential.
    Navalon S; Alvaro M; Garcia H
    Water Res; 2008 Aug; 42(14):3990-4000. PubMed ID: 18692215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide.
    Richardson SD; Thruston AD; Rav-Acha C; Groisman L; Popilevsky I; Juraev O; Glezer V; McKague AB; Plewa MJ; Wagner ED
    Environ Sci Technol; 2003 Sep; 37(17):3782-93. PubMed ID: 12967096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relationship between disinfection by-product formation and structural characteristics of humic substances in chloramination.
    Wu WW; Chadik PA; Delfino JJ
    Environ Toxicol Chem; 2003 Dec; 22(12):2845-52. PubMed ID: 14713023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of alum coagulation on speciation and distribution of trihalomethanes (THMs) and haloacetic acids (HAAs).
    Gang D; Clevenger TE; Banerji SK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(3):521-34. PubMed ID: 15756964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of iodinated trihalomethanes during chlorination of amino acid in waters.
    Li C; Lin Q; Dong F; Li Y; Luo F; Zhang K
    Chemosphere; 2019 Feb; 217():355-363. PubMed ID: 30419389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of bromide ion effects on disinfection by-products formation and speciation in an Istanbul water supply.
    Uyak V; Toroz I
    J Hazard Mater; 2007 Oct; 149(2):445-51. PubMed ID: 17517472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [DBPs formation characteristics in chlorinating and relationship with chemical structure of some aromatic organic matter].
    Wang XW; Zhang XJ; Chen C; Hao XF
    Huan Jing Ke Xue; 2006 Aug; 27(8):1603-7. PubMed ID: 17111619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of disinfection byproducts (DBPs) by ozonation and peroxone process: Role of chloride on removal of DBP precursors.
    Deeudomwongsa P; Phattarapattamawong S; Andrew Lin KY
    Chemosphere; 2017 Oct; 184():1215-1222. PubMed ID: 28672704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water--a case study.
    Bond T; Huang J; Graham NJ; Templeton MR
    Sci Total Environ; 2014 Feb; 470-471():469-79. PubMed ID: 24176694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-level modelling of chlorination by-product presence in drinking water distribution systems for human exposure assessment purposes.
    Legay C; Rodriguez MJ; Miranda-Moreno L; Sérodes JB; Levallois P
    Environ Monit Assess; 2011 Jul; 178(1-4):507-24. PubMed ID: 20862540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of metal ions on disinfection byproduct formation during chlorination of natural organic matter and surrogates.
    Zhao Y; Yang HW; Liu ST; Tang S; Wang XM; Xie YF
    Chemosphere; 2016 Feb; 144():1074-82. PubMed ID: 26454116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants.
    Hua G; Reckhow DA
    Water Res; 2007 Apr; 41(8):1667-78. PubMed ID: 17360020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters: role of bromide.
    Criquet J; Allard S; Salhi E; Joll CA; Heitz A; von Gunten U
    Environ Sci Technol; 2012 Jul; 46(13):7350-7. PubMed ID: 22667818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.