BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15506246)

  • 1. Effects of hydrocarbon structure on fatty acid, fatty alcohol, and beta-hydroxy acid composition in the hydrocarbon-degrading bacterium Marinobacter hydrocarbonoclasticus.
    Soltani M; Metzger P; Largeau C
    Lipids; 2004 May; 39(5):491-505. PubMed ID: 15506246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of 1-chlorooctadecane into FA and beta-hydroxy acids of Marinobacter hydrocarbonoclasticus.
    Aubert E; Metzger P; Largeau C
    Lipids; 2004 Jan; 39(1):75-9. PubMed ID: 15055238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid and hydroxy acid adaptation in three gram-negative hydrocarbon-degrading bacteria in relation to carbon source.
    Soltani M; Metzger P; Largeau C
    Lipids; 2005 Dec; 40(12):1263-72. PubMed ID: 16477811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain #5.
    Grossi V; Yakimov MM; Al Ali B; Tapilatu Y; Cuny P; Goutx M; La Cono V; Giuliano L; Tamburini C
    Environ Microbiol; 2010 Jul; 12(7):2020-33. PubMed ID: 20406283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Identification and characterization of a novel hydrocarbon-degrading Marinobacter sp. PY97S].
    Li Q; Cui Z; Zhao A; Gao W; Zheng L
    Wei Sheng Wu Xue Bao; 2011 May; 51(5):648-55. PubMed ID: 21800628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial assimilation of hydrocarbons: cellular distribution of fatty acids.
    Makula RA; Finnerty WR
    J Bacteriol; 1972 Oct; 112(1):398-407. PubMed ID: 5079069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid composition and chemotaxonomy of Pseudomonas putrefaciens (Alteromonas putrefaciens).
    Wilkinson SG; Caudwell PF
    J Gen Microbiol; 1980 Jun; 118(2):329-41. PubMed ID: 7441198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of hydrocarbons and derivatives on the polar lipid fatty acids of an Acinetobacter isolate.
    Patrick MA; Dugan PR
    J Bacteriol; 1974 Jul; 119(1):76-81. PubMed ID: 4407014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin of fatty acids in the hydrocarbon-utilizing microorganism Mycobacterium vaccae.
    King DH; Perry JJ
    Can J Microbiol; 1975 Jan; 21(1):85-9. PubMed ID: 1116040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-bond patterns of fatty acids and alcohols in steer and human meibomian gland lipids.
    Nicolaides N; Santos EC; Papadakis K
    Lipids; 1984 Apr; 19(4):264-77. PubMed ID: 6717255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles.
    Mounier J; Camus A; Mitteau I; Vaysse PJ; Goulas P; Grimaud R; Sivadon P
    FEMS Microbiol Ecol; 2014 Dec; 90(3):816-31. PubMed ID: 25318592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of n-alkanes and petroleum on fatty acid composition of a hydrocarbonoclastic bacterium: Marinobacter hydrocarbonoclasticus strain 617.
    Doumenq P; Aries E; Asia L; Acquaviva M; Artaud J; Gilewicz M; Mille G; Bertrand JC
    Chemosphere; 2001 Aug; 44(4):519-28. PubMed ID: 11482638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomonas maltophilia: identification of the hydrocarbons, glycerides, and glycolipoproteins of cellular lipids.
    Tornabene TG; Peterson SL
    Can J Microbiol; 1978 May; 24(5):525-32. PubMed ID: 657006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630.
    Alvarez HM; Mayer F; Fabritius D; Steinbüchel A
    Arch Microbiol; 1996 Jun; 165(6):377-86. PubMed ID: 8661931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MICROBIAL INCORPORATION OF FATTY ACIDS DERIVED FROM N-ALKANES INTO GLYCERIDES AND WAXES.
    DAVIS JB
    Appl Microbiol; 1964 May; 12(3):210-4. PubMed ID: 14170957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual lipid composition of a Bacillus sp. isolated from Lake Pomorie in Bulgaria.
    Carballeira NM; Guzmán A; Nechev JT; Lahtchev K; Ivanova A; Stefanov K
    Lipids; 2000 Dec; 35(12):1371-5. PubMed ID: 11201999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium.
    Gauthier MJ; Lafay B; Christen R; Fernandez L; Acquaviva M; Bonin P; Bertrand JC
    Int J Syst Bacteriol; 1992 Oct; 42(4):568-76. PubMed ID: 1382536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The di- and triesters of the lipids of steer and human meibomian glands.
    Nicolaides N; Santos EC
    Lipids; 1985 Jul; 20(7):454-67. PubMed ID: 4033365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipids of Pseudomonas aeruginosa cells grown on hydrocarbons and on trypticase soy broth.
    Edmonds P; Cooney JJ
    J Bacteriol; 1969 Apr; 98(1):16-22. PubMed ID: 4976464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a new type of outer membrane lipid in oral spirochete Treponema denticola. Functioning permeation barrier without lipopolysaccharides.
    Schultz CP; Wolf V; Lange R; Mertens E; Wecke J; Naumann D; Zähringer U
    J Biol Chem; 1998 Jun; 273(25):15661-6. PubMed ID: 9624160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.