BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 1550673)

  • 1. The aromatic binding site for tetraethylammonium ion on potassium channels.
    Heginbotham L; MacKinnon R
    Neuron; 1992 Mar; 8(3):483-91. PubMed ID: 1550673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. External TEA block of shaker K+ channels is coupled to the movement of K+ ions within the selectivity filter.
    Thompson J; Begenisich T
    J Gen Physiol; 2003 Aug; 122(2):239-46. PubMed ID: 12885878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-activity relationship of quaternary ammonium ions at the external tetraethylammonium binding site of cloned potassium channels.
    Jarolimek W; Soman KV; Alam M; Brown AM
    Mol Pharmacol; 1996 Jan; 49(1):165-71. PubMed ID: 8569703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affinity and location of an internal K+ ion binding site in shaker K channels.
    Thompson J; Begenisich T
    J Gen Physiol; 2001 May; 117(5):373-84. PubMed ID: 11331347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cation-pi interaction between extracellular TEA and an aromatic residue in potassium channels.
    Ahern CA; Eastwood AL; Lester HA; Dougherty DA; Horn R
    J Gen Physiol; 2006 Dec; 128(6):649-57. PubMed ID: 17130518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple subunits of a voltage-dependent potassium channel contribute to the binding site for tetraethylammonium.
    Kavanaugh MP; Hurst RS; Yakel J; Varnum MD; Adelman JP; North RA
    Neuron; 1992 Mar; 8(3):493-7. PubMed ID: 1550674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular blockade of K(+) channels by TEA: results from molecular dynamics simulations of the KcsA channel.
    Crouzy S; Bernèche S; Roux B
    J Gen Physiol; 2001 Aug; 118(2):207-18. PubMed ID: 11479347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel.
    Yellen G; Jurman ME; Abramson T; MacKinnon R
    Science; 1991 Feb; 251(4996):939-42. PubMed ID: 2000494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple residues specify external tetraethylammonium blockade in voltage-gated potassium channels.
    Pascual JM; Shieh CC; Kirsch GE; Brown AM
    Biophys J; 1995 Aug; 69(2):428-34. PubMed ID: 8527656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two stable, conducting conformations of the selectivity filter in Shaker K+ channels.
    Thompson J; Begenisich T
    J Gen Physiol; 2005 Jun; 125(6):619-29. PubMed ID: 15897293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tethered blockers as molecular 'tape measures' for a voltage-gated K+ channel.
    Blaustein RO; Cole PA; Williams C; Miller C
    Nat Struct Biol; 2000 Apr; 7(4):309-11. PubMed ID: 10742176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MinK endows the I(Ks) potassium channel pore with sensitivity to internal tetraethylammonium.
    Sesti F; Tai KK; Goldstein SA
    Biophys J; 2000 Sep; 79(3):1369-78. PubMed ID: 10968999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delayed rectifier current of bullfrog sympathetic neurons: ion-ion competition, asymmetrical block and effects of ions on gating.
    Block BM; Jones SW
    J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):403-16. PubMed ID: 9080370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels.
    MacKinnon R; Yellen G
    Science; 1990 Oct; 250(4978):276-9. PubMed ID: 2218530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural motif for the voltage-gated potassium channel pore.
    Lipkind GM; Hanck DA; Fozzard HA
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9215-9. PubMed ID: 7568104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The external TEA binding site and C-type inactivation in voltage-gated potassium channels.
    Andalib P; Consiglio JF; Trapani JG; Korn SJ
    Biophys J; 2004 Nov; 87(5):3148-61. PubMed ID: 15326027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brownian dynamics theory for predicting internal and external blockages of tetraethylammonium in the KcsA potassium channel.
    Hoyles M; Krishnamurthy V; Siksik M; Chung SH
    Biophys J; 2008 Jan; 94(2):366-78. PubMed ID: 17872961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of ion conduction and drug binding sites in the inner mouth of voltage-gated K+ channels.
    Shieh CC; Kirsch GE
    Biophys J; 1994 Dec; 67(6):2316-25. PubMed ID: 7696472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping of organic blockers by closing of voltage-dependent K+ channels: evidence for a trap door mechanism of activation gating.
    Holmgren M; Smith PL; Yellen G
    J Gen Physiol; 1997 May; 109(5):527-35. PubMed ID: 9154902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of external tetraethylammonium block of the KcsA potassium channel: molecular and Brownian dynamics studies.
    Bisset D; Chung SH
    Biochim Biophys Acta; 2008 Oct; 1778(10):2273-82. PubMed ID: 18582434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.