These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 1550673)
1. The aromatic binding site for tetraethylammonium ion on potassium channels. Heginbotham L; MacKinnon R Neuron; 1992 Mar; 8(3):483-91. PubMed ID: 1550673 [TBL] [Abstract][Full Text] [Related]
2. External TEA block of shaker K+ channels is coupled to the movement of K+ ions within the selectivity filter. Thompson J; Begenisich T J Gen Physiol; 2003 Aug; 122(2):239-46. PubMed ID: 12885878 [TBL] [Abstract][Full Text] [Related]
3. Structure-activity relationship of quaternary ammonium ions at the external tetraethylammonium binding site of cloned potassium channels. Jarolimek W; Soman KV; Alam M; Brown AM Mol Pharmacol; 1996 Jan; 49(1):165-71. PubMed ID: 8569703 [TBL] [Abstract][Full Text] [Related]
4. Affinity and location of an internal K+ ion binding site in shaker K channels. Thompson J; Begenisich T J Gen Physiol; 2001 May; 117(5):373-84. PubMed ID: 11331347 [TBL] [Abstract][Full Text] [Related]
5. A cation-pi interaction between extracellular TEA and an aromatic residue in potassium channels. Ahern CA; Eastwood AL; Lester HA; Dougherty DA; Horn R J Gen Physiol; 2006 Dec; 128(6):649-57. PubMed ID: 17130518 [TBL] [Abstract][Full Text] [Related]
6. Multiple subunits of a voltage-dependent potassium channel contribute to the binding site for tetraethylammonium. Kavanaugh MP; Hurst RS; Yakel J; Varnum MD; Adelman JP; North RA Neuron; 1992 Mar; 8(3):493-7. PubMed ID: 1550674 [TBL] [Abstract][Full Text] [Related]
7. Extracellular blockade of K(+) channels by TEA: results from molecular dynamics simulations of the KcsA channel. Crouzy S; Bernèche S; Roux B J Gen Physiol; 2001 Aug; 118(2):207-18. PubMed ID: 11479347 [TBL] [Abstract][Full Text] [Related]
8. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Yellen G; Jurman ME; Abramson T; MacKinnon R Science; 1991 Feb; 251(4996):939-42. PubMed ID: 2000494 [TBL] [Abstract][Full Text] [Related]
10. Two stable, conducting conformations of the selectivity filter in Shaker K+ channels. Thompson J; Begenisich T J Gen Physiol; 2005 Jun; 125(6):619-29. PubMed ID: 15897293 [TBL] [Abstract][Full Text] [Related]
11. Tethered blockers as molecular 'tape measures' for a voltage-gated K+ channel. Blaustein RO; Cole PA; Williams C; Miller C Nat Struct Biol; 2000 Apr; 7(4):309-11. PubMed ID: 10742176 [TBL] [Abstract][Full Text] [Related]
12. MinK endows the I(Ks) potassium channel pore with sensitivity to internal tetraethylammonium. Sesti F; Tai KK; Goldstein SA Biophys J; 2000 Sep; 79(3):1369-78. PubMed ID: 10968999 [TBL] [Abstract][Full Text] [Related]
13. Delayed rectifier current of bullfrog sympathetic neurons: ion-ion competition, asymmetrical block and effects of ions on gating. Block BM; Jones SW J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):403-16. PubMed ID: 9080370 [TBL] [Abstract][Full Text] [Related]
14. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. MacKinnon R; Yellen G Science; 1990 Oct; 250(4978):276-9. PubMed ID: 2218530 [TBL] [Abstract][Full Text] [Related]
15. A structural motif for the voltage-gated potassium channel pore. Lipkind GM; Hanck DA; Fozzard HA Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9215-9. PubMed ID: 7568104 [TBL] [Abstract][Full Text] [Related]
16. The external TEA binding site and C-type inactivation in voltage-gated potassium channels. Andalib P; Consiglio JF; Trapani JG; Korn SJ Biophys J; 2004 Nov; 87(5):3148-61. PubMed ID: 15326027 [TBL] [Abstract][Full Text] [Related]
17. Brownian dynamics theory for predicting internal and external blockages of tetraethylammonium in the KcsA potassium channel. Hoyles M; Krishnamurthy V; Siksik M; Chung SH Biophys J; 2008 Jan; 94(2):366-78. PubMed ID: 17872961 [TBL] [Abstract][Full Text] [Related]
18. Mutational analysis of ion conduction and drug binding sites in the inner mouth of voltage-gated K+ channels. Shieh CC; Kirsch GE Biophys J; 1994 Dec; 67(6):2316-25. PubMed ID: 7696472 [TBL] [Abstract][Full Text] [Related]
19. Trapping of organic blockers by closing of voltage-dependent K+ channels: evidence for a trap door mechanism of activation gating. Holmgren M; Smith PL; Yellen G J Gen Physiol; 1997 May; 109(5):527-35. PubMed ID: 9154902 [TBL] [Abstract][Full Text] [Related]
20. Efficacy of external tetraethylammonium block of the KcsA potassium channel: molecular and Brownian dynamics studies. Bisset D; Chung SH Biochim Biophys Acta; 2008 Oct; 1778(10):2273-82. PubMed ID: 18582434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]