These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15506892)

  • 41. Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior.
    Ferris CF; Lu SF; Messenger T; Guillon CD; Heindel N; Miller M; Koppel G; Robert Bruns F; Simon NG
    Pharmacol Biochem Behav; 2006 Feb; 83(2):169-74. PubMed ID: 16504276
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Repeated fluoxetine administration during adolescence stimulates aggressive behavior and alters serotonin and vasopressin neural development in hamsters.
    Ricci LA; Melloni RH
    Behav Neurosci; 2012 Oct; 126(5):640-53. PubMed ID: 23025830
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The neurobehavioral effects of phytoestrogens in male Syrian hamsters.
    Moore TO; Karom M; O'Farrell L
    Brain Res; 2004 Jul; 1016(1):102-10. PubMed ID: 15234258
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aggression upon adolescent cocaine exposure linked to serotonin anomalies: theoretical comment on Ricci et al. (2004).
    Cunningham KA
    Behav Neurosci; 2004 Oct; 118(5):1143-4. PubMed ID: 15506900
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulatory role of 5-HT3 receptors in mediation of apomorphine-induced aggressive behaviour in male rats.
    Rudissaar R; Pruus K; Skrebuhhova T; Allikmets L; Matto V
    Behav Brain Res; 1999 Dec; 106(1-2):91-6. PubMed ID: 10595424
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Downregulated hypothalamic 5-HT3 receptor expression and enhanced 5-HT3 receptor antagonist-mediated improvement in fatigue-like behaviour in cholestatic rats.
    Nguyen H; Wang H; le T; Ho W; Sharkey KA; Swain MG
    Neurogastroenterol Motil; 2008 Mar; 20(3):228-35. PubMed ID: 17919312
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential role of the 5-HT1A receptor in aggressive and non-aggressive mice: an across-strain comparison.
    Caramaschi D; de Boer SF; Koolhaas JM
    Physiol Behav; 2007 Mar; 90(4):590-601. PubMed ID: 17229445
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence that the 5-HT1A autoreceptor is an important pharmacological target for the modulation of cocaine behavioral stimulant effects.
    Carey RJ; DePalma G; Damianopoulos E; Shanahan A; Müller CP; Huston JP
    Brain Res; 2005 Feb; 1034(1-2):162-71. PubMed ID: 15713268
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Luminal hypotonicity increases duodenal mucosal permeability by a mechanism involving 5-hydroxytryptamine.
    Nylander O; Pihl L
    Acta Physiol (Oxf); 2006 Jan; 186(1):45-58. PubMed ID: 16497179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vasopressin differentially modulates aggression and anxiety in adolescent hamsters administered anabolic steroids.
    Morrison TR; Ricci LA; Melloni RH
    Horm Behav; 2016 Nov; 86():55-63. PubMed ID: 27149949
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glutamic acid decarboxylase (GAD65) immunoreactivity in brains of aggressive, adolescent anabolic steroid-treated hamsters.
    Grimes JM; Ricci LA; Melloni RH
    Horm Behav; 2003 Sep; 44(3):271-80. PubMed ID: 14609549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Serotonin1A autoreceptor activation by S 15535 enhances circadian activity rhythms in hamsters: evaluation of potential interactions with serotonin2A and serotonin2C receptors.
    Gannon RL; Millan MJ
    Neuroscience; 2006; 137(1):287-99. PubMed ID: 16289351
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Serotonin 5-HT1A and 5-HT3 receptors in an impulsive-aggressive phenotype.
    Cervantes MC; Delville Y
    Behav Neurosci; 2009 Jun; 123(3):589-98. PubMed ID: 19485565
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters.
    Ferris CF; Melloni RH; Koppel G; Perry KW; Fuller RW; Delville Y
    J Neurosci; 1997 Jun; 17(11):4331-40. PubMed ID: 9151749
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detailed investigations of 5-HT3 compounds in a drug discrimination model.
    De La Garza R; Callahan PM; Cunningham KA
    Pharmacol Biochem Behav; 1996 Jul; 54(3):533-40. PubMed ID: 8743626
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cyclic AMP mediates circadian phase shifts induced by microinjection of serotonergic drugs in the hamster dorsal raphe nucleus.
    Duncan MJ; Davis VA
    Brain Res; 2005 Oct; 1058(1-2):10-6. PubMed ID: 16150426
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Repeated cocaine treatment activates flank marking in adolescent female hamsters.
    Melloni RH; Connor DF; Todtenkopf MS; DeLeon KR; Sanyal P; Harrison RJ
    Physiol Behav; 2001 Jul; 73(4):561-70. PubMed ID: 11495660
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CCK and 5-HT act synergistically to suppress food intake through simultaneous activation of CCK-1 and 5-HT3 receptors.
    Hayes MR; Covasa M
    Peptides; 2005 Nov; 26(11):2322-30. PubMed ID: 16269356
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Absence of 5-HT3 and cholinergic mechanisms in improgan antinociception.
    Nalwalk JW; Svokos K; Leurs R; Hough LB
    Pharmacol Biochem Behav; 2005 Mar; 80(3):505-10. PubMed ID: 15740793
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of central 5-HT3 receptors in the control of blood pressure in stressed and non-stressed rats.
    Ferreira HS; de Castro e Silva E; Cointeiro C; Oliveira E; Faustino TN; Fregoneze JB
    Brain Res; 2004 Nov; 1028(1):48-58. PubMed ID: 15518641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.