These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 15506951)

  • 1. Reactive sulphur species in oxidative signal transduction.
    Jacob C; Lancaster JR; Giles GI
    Biochem Soc Trans; 2004 Dec; 32(Pt 6):1015-7. PubMed ID: 15506951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive sulphur species: an in vitro investigation of the oxidation properties of disulphide S-oxides.
    Giles GI; Tasker KM; Collins C; Giles NM; O'rourke E; Jacob C
    Biochem J; 2002 Jun; 364(Pt 2):579-85. PubMed ID: 12023902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of biological thiols by highly reactive disulfide-S-oxides.
    Giles GI; Tasker KM; Jacob C
    Gen Physiol Biophys; 2002 Mar; 21(1):65-72. PubMed ID: 12168727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox modifications of protein-thiols: emerging roles in cell signaling.
    Biswas S; Chida AS; Rahman I
    Biochem Pharmacol; 2006 Feb; 71(5):551-64. PubMed ID: 16337153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteins containing non-native disulfide bonds generated by oxidative stress can act as signals for the induction of the heat shock response.
    McDuffee AT; Senisterra G; Huntley S; Lepock JR; Sekhar KR; Meredith MJ; Borrelli MJ; Morrow JD; Freeman ML
    J Cell Physiol; 1997 May; 171(2):143-51. PubMed ID: 9130461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extracellular microenvironment plays a key role in regulating the redox status of cell surface proteins in HIV-infected subjects.
    Sahaf B; Heydari K; Herzenberg LA; Herzenberg LA
    Arch Biochem Biophys; 2005 Feb; 434(1):26-32. PubMed ID: 15629105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of cysteine residues as redox-sensitive regulatory switches.
    Barford D
    Curr Opin Struct Biol; 2004 Dec; 14(6):679-86. PubMed ID: 15582391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiols and the chemoprevention of cancer.
    Huber WW; Parzefall W
    Curr Opin Pharmacol; 2007 Aug; 7(4):404-9. PubMed ID: 17644484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal transduction during oxidative stress.
    Vranová E; Inzé D; Van Breusegem F
    J Exp Bot; 2002 May; 53(372):1227-36. PubMed ID: 11997371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of oxidative stress on protein thiols and disulphides in Mytilus edulis revealed by proteomics: actin and protein disulphide isomerase are redox targets.
    McDonagh B; Sheehan D
    Mar Environ Res; 2008 Jul; 66(1):193-5. PubMed ID: 18396326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curcumin mediates time and concentration dependent regulation of redox homeostasis leading to cytotoxicity in macrophage cells.
    Kunwar A; Sandur SK; Krishna M; Priyadarsini KI
    Eur J Pharmacol; 2009 Jun; 611(1-3):8-16. PubMed ID: 19344704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells.
    Nair S; Li W; Kong AN
    Acta Pharmacol Sin; 2007 Apr; 28(4):459-72. PubMed ID: 17376285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox regulation of skeletal muscle.
    Jackson MJ
    IUBMB Life; 2008 Aug; 60(8):497-501. PubMed ID: 18629903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiols in cellular redox signalling and control.
    Moran LK; Gutteridge JM; Quinlan GJ
    Curr Med Chem; 2001 Jun; 8(7):763-72. PubMed ID: 11375748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress.
    Gallogly MM; Mieyal JJ
    Curr Opin Pharmacol; 2007 Aug; 7(4):381-91. PubMed ID: 17662654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct association of hepatopoietin with thioredoxin constitutes a redox signal transduction in activation of AP-1/NF-kappaB.
    Li Y; Liu W; Xing G; Tian C; Zhu Y; He F
    Cell Signal; 2005 Aug; 17(8):985-96. PubMed ID: 15894171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione in plants: an integrated overview.
    Noctor G; Mhamdi A; Chaouch S; Han Y; Neukermans J; Marquez-Garcia B; Queval G; Foyer CH
    Plant Cell Environ; 2012 Feb; 35(2):454-84. PubMed ID: 21777251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox regulation of the signaling pathways leading to eNOS phosphorylation.
    Tanaka T; Nakamura H; Yodoi J; Bloom ET
    Free Radic Biol Med; 2005 May; 38(9):1231-42. PubMed ID: 15808421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.