These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 15507748)
1. Response to the paper A comparison between experimental and theoretical aspherical-atom scattering factors for charge-density refinement of large molecules, by Pichon-Pesme, Jelsch, Guillot & Lecomte (2004). Volkov A; Koritsanszky T; Li X; Coppens P Acta Crystallogr A; 2004 Nov; 60(Pt 6):638-9. PubMed ID: 15507748 [No Abstract] [Full Text] [Related]
2. Improving the scattering-factor formalism in protein refinement: application of the University at Buffalo Aspherical-Atom Databank to polypeptide structures. Volkov A; Messerschmidt M; Coppens P Acta Crystallogr D Biol Crystallogr; 2007 Feb; 63(Pt 2):160-70. PubMed ID: 17242509 [TBL] [Abstract][Full Text] [Related]
3. A comparison between experimental and theoretical aspherical-atom scattering factors for charge-density refinement of large molecules. Pichon-Pesme V; Jelsch C; Guillot B; Lecomte C Acta Crystallogr A; 2004 May; 60(Pt 3):204-8. PubMed ID: 15103162 [TBL] [Abstract][Full Text] [Related]
4. Determination of experimental charge density in model nickel macrocycle: [3,11-bis(methoxycarbonyl)-1,5,9,13-tetraazacyclohexadeca-1,3,9,11-tetraenato-(2-)-kappa(4)N]nickel(II). Domagała S; Korybut-Daszkiewicz B; Straver L; Woźniak K Inorg Chem; 2009 May; 48(9):4010-20. PubMed ID: 19354267 [TBL] [Abstract][Full Text] [Related]
5. Interaction energies between glycopeptide antibiotics and substrates in complexes determined by X-ray crystallography: application of a theoretical databank of aspherical atoms and a symmetry-adapted perturbation theory-based set of interatomic potentials. Li X; Volkov AV; Szalewicz K; Coppens P Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):639-47. PubMed ID: 16699191 [TBL] [Abstract][Full Text] [Related]
6. Introduction and validation of an invariom database for amino-acid, peptide and protein molecules. Dittrich B; Hübschle CB; Luger P; Spackman MA Acta Crystallogr D Biol Crystallogr; 2006 Nov; 62(Pt 11):1325-35. PubMed ID: 17057335 [TBL] [Abstract][Full Text] [Related]
7. Experimental charge density studies of disordered N-phenylpyrrole and N-(4-fluorophenyl)pyrrole. Meindl K; Henn J; Kocher N; Leusser D; Zachariasse KA; Sheldrick GM; Koritsanszky T; Stalke D J Phys Chem A; 2009 Sep; 113(35):9684-91. PubMed ID: 19673504 [TBL] [Abstract][Full Text] [Related]
8. Towards the best model for H atoms in experimental charge-density refinement. Hoser AA; Dominiak PM; Woźniak K Acta Crystallogr A; 2009 Jul; 65(Pt 4):300-11. PubMed ID: 19535851 [TBL] [Abstract][Full Text] [Related]
9. The invariom model and its application: refinement of D,L-serine at different temperatures and resolution. Dittrich B; Hübschle CB; Messerschmidt M; Kalinowski R; Girnt D; Luger P Acta Crystallogr A; 2005 May; 61(Pt 3):314-20. PubMed ID: 15846034 [TBL] [Abstract][Full Text] [Related]
10. On the application of an experimental multipolar pseudo-atom library for accurate refinement of small-molecule and protein crystal structures. Zarychta B; Pichon-Pesme V; Guillot B; Lecomte C; Jelsch C Acta Crystallogr A; 2007 Mar; 63(Pt 2):108-25. PubMed ID: 17301471 [TBL] [Abstract][Full Text] [Related]
11. Electron density is not spherical: the many applications of the transferable aspherical atom model. Kulik M; Dominiak PM Comput Struct Biotechnol J; 2022; 20():6237-6243. PubMed ID: 36420158 [TBL] [Abstract][Full Text] [Related]
12. Charge-density analysis of a protein structure at subatomic resolution: the human aldose reductase case. Guillot B; Jelsch C; Podjarny A; Lecomte C Acta Crystallogr D Biol Crystallogr; 2008 May; 64(Pt 5):567-88. PubMed ID: 18453693 [TBL] [Abstract][Full Text] [Related]
13. Experimental and theoretical charge density study of chemical bonding in a Co dimer complex. Overgaard J; Clausen HF; Platts JA; Iversen BB J Am Chem Soc; 2008 Mar; 130(12):3834-43. PubMed ID: 18314974 [TBL] [Abstract][Full Text] [Related]
15. X-ray structure refinement using aspherical atomic density functions obtained from quantum-mechanical calculations. Jayatilaka D; Dittrich B Acta Crystallogr A; 2008 May; 64(Pt 3):383-93. PubMed ID: 18421128 [TBL] [Abstract][Full Text] [Related]
16. Experimental and theoretical charge density distribution in two ternary cobalt(III) complexes of aromatic amino acids. Overgaard J; Waller MP; Piltz R; Platts JA; Emseis P; Leverett P; Williams PA; Hibbs DE J Phys Chem A; 2007 Oct; 111(40):10123-33. PubMed ID: 17877334 [TBL] [Abstract][Full Text] [Related]
17. Experimental charge-density study on the nickel(II) coordination complex [Ni(H3L)][NO3][PF6] [H3L = N,N',N''-tris(2-hydroxy-3-methylbutyl)-1,4,7-triazacyclononane]: a reappraisal. Farrugia LJ; Frampton CS; Howard JA; Mallinson PR; Peacock RD; Smith GT; Stewart B Acta Crystallogr B; 2006 Apr; 62(Pt 2):236-44. PubMed ID: 16552157 [TBL] [Abstract][Full Text] [Related]
18. A new force field (ECEPP-05) for peptides, proteins, and organic molecules. Arnautova YA; Jagielska A; Scheraga HA J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746 [TBL] [Abstract][Full Text] [Related]
19. Experimental X-ray charge density studies on the binary carbonyls Cr(CO)6, Fe(CO)5, and Ni(CO)4. Farrugia LJ; Evans C J Phys Chem A; 2005 Oct; 109(39):8834-48. PubMed ID: 16834287 [TBL] [Abstract][Full Text] [Related]
20. 4-Benzoyl-3,4-dihydro-2H-1,4-benzoxazine-2-carbonitrile: refinement using a multipolar atom model. Ejsmont K; Joly JP; Wenger E; Guillot B; Jelsch C Acta Crystallogr C; 2009 Jul; 65(Pt 7):o342-4. PubMed ID: 19578269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]