These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 15507762)
1. Molecular mechanism underlying activation of superoxide-producing NADPH oxidases: roles for their regulatory proteins. Sumimoto H; Ueno N; Yamasaki T; Taura M; Takeya R Jpn J Infect Dis; 2004 Oct; 57(5):S24-5. PubMed ID: 15507762 [TBL] [Abstract][Full Text] [Related]
2. A region N-terminal to the tandem SH3 domain of p47phox plays a crucial role in the activation of the phagocyte NADPH oxidase. Taura M; Miyano K; Minakami R; Kamakura S; Takeya R; Sumimoto H Biochem J; 2009 Apr; 419(2):329-38. PubMed ID: 19090790 [TBL] [Abstract][Full Text] [Related]
3. Role of the small GTPase Rac in p22phox-dependent NADPH oxidases. Miyano K; Sumimoto H Biochimie; 2007 Sep; 89(9):1133-44. PubMed ID: 17583407 [TBL] [Abstract][Full Text] [Related]
4. Regulation of superoxide-producing NADPH oxidases in nonphagocytic cells. Takeya R; Ueno N; Sumimoto H Methods Enzymol; 2006; 406():456-68. PubMed ID: 16472678 [TBL] [Abstract][Full Text] [Related]
5. Activation of the superoxide-producing phagocyte NADPH oxidase requires co-operation between the tandem SH3 domains of p47phox in recognition of a polyproline type II helix and an adjacent alpha-helix of p22phox. Nobuhisa I; Takeya R; Ogura K; Ueno N; Kohda D; Inagaki F; Sumimoto H Biochem J; 2006 May; 396(1):183-92. PubMed ID: 16460309 [TBL] [Abstract][Full Text] [Related]
6. The insert region of the Rac GTPases is dispensable for activation of superoxide-producing NADPH oxidases. Miyano K; Koga H; Minakami R; Sumimoto H Biochem J; 2009 Aug; 422(2):373-82. PubMed ID: 19534724 [TBL] [Abstract][Full Text] [Related]
7. Role for the first SH3 domain of p67phox in activation of superoxide-producing NADPH oxidases. Maehara Y; Miyano K; Sumimoto H Biochem Biophys Res Commun; 2009 Feb; 379(2):589-93. PubMed ID: 19116138 [TBL] [Abstract][Full Text] [Related]
8. Expression and function of Noxo1gamma, an alternative splicing form of the NADPH oxidase organizer 1. Takeya R; Taura M; Yamasaki T; Naito S; Sumimoto H FEBS J; 2006 Aug; 273(16):3663-77. PubMed ID: 16911517 [TBL] [Abstract][Full Text] [Related]
9. Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. Kawahara T; Ritsick D; Cheng G; Lambeth JD J Biol Chem; 2005 Sep; 280(36):31859-69. PubMed ID: 15994299 [TBL] [Abstract][Full Text] [Related]
10. Alternative mRNA splice forms of NOXO1: differential tissue expression and regulation of Nox1 and Nox3. Cheng G; Lambeth JD Gene; 2005 Aug; 356():118-26. PubMed ID: 15949904 [TBL] [Abstract][Full Text] [Related]
11. Lipopolysaccharide primes the respiratory burst of Atlantic salmon SHK-1 cells through protein kinase C-mediated phosphorylation of p47phox. OlavarrÃa VH; Gallardo L; Figueroa JE; Mulero V Dev Comp Immunol; 2010 Dec; 34(12):1242-53. PubMed ID: 20621116 [TBL] [Abstract][Full Text] [Related]
12. Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships. Mizrahi A; Berdichevsky Y; Ugolev Y; Molshanski-Mor S; Nakash Y; Dahan I; Alloul N; Gorzalczany Y; Sarfstein R; Hirshberg M; Pick E J Leukoc Biol; 2006 May; 79(5):881-95. PubMed ID: 16641134 [TBL] [Abstract][Full Text] [Related]
13. Interaction between the SH3 domains and C-terminal proline-rich region in NADPH oxidase organizer 1 (Noxo1). Yamamoto A; Kami K; Takeya R; Sumimoto H Biochem Biophys Res Commun; 2007 Jan; 352(2):560-5. PubMed ID: 17126813 [TBL] [Abstract][Full Text] [Related]
14. Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. Takeya R; Ueno N; Kami K; Taura M; Kohjima M; Izaki T; Nunoi H; Sumimoto H J Biol Chem; 2003 Jul; 278(27):25234-46. PubMed ID: 12716910 [TBL] [Abstract][Full Text] [Related]
15. Roles for proline-rich regions of p47phox and p67phox in the phagocyte NADPH oxidase activation in vitro. Hata K; Takeshige K; Sumimoto H Biochem Biophys Res Commun; 1997 Dec; 241(2):226-31. PubMed ID: 9425254 [TBL] [Abstract][Full Text] [Related]
16. Molecular mechanism for activation of superoxide-producing NADPH oxidases. Takeya R; Sumimoto H Mol Cells; 2003 Dec; 16(3):271-7. PubMed ID: 14744014 [TBL] [Abstract][Full Text] [Related]
18. Rac1 disrupts p67phox/p40phox binding: a novel role for Rac in NADPH oxidase activation. Rinckel LA; Faris SL; Hitt ND; Kleinberg ME Biochem Biophys Res Commun; 1999 Sep; 263(1):118-22. PubMed ID: 10486263 [TBL] [Abstract][Full Text] [Related]
19. Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (nox) family. Minakami R; Sumimotoa H Int J Hematol; 2006 Oct; 84(3):193-8. PubMed ID: 17050190 [TBL] [Abstract][Full Text] [Related]
20. Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. Miyano K; Ueno N; Takeya R; Sumimoto H J Biol Chem; 2006 Aug; 281(31):21857-21868. PubMed ID: 16762923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]