These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 15507800)

  • 1. A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support.
    Lowe TG; Hashim S; Wilson LA; O'Brien MF; Smith DA; Diekmann MJ; Trommeter J
    Spine (Phila Pa 1976); 2004 Nov; 29(21):2389-94. PubMed ID: 15507800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on the structural properties of the lumbar endplate: histological structure, the effect of bone density, and spinal level.
    Hou Y; Luo Z
    Spine (Phila Pa 1976); 2009 May; 34(12):E427-33. PubMed ID: 19454994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion.
    Lim TH; Kwon H; Jeon CH; Kim JG; Sokolowski M; Natarajan R; An HS; Andersson GB
    Spine (Phila Pa 1976); 2001 Apr; 26(8):951-6. PubMed ID: 11317120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interbody device shape and size are important to strengthen the vertebra-implant interface.
    Tan JS; Bailey CS; Dvorak MF; Fisher CG; Oxland TR
    Spine (Phila Pa 1976); 2005 Mar; 30(6):638-44. PubMed ID: 15770178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs.
    Steffen T; Tsantrizos A; Aebi M
    Spine (Phila Pa 1976); 2000 May; 25(9):1077-84. PubMed ID: 10788851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does Spanning a Lateral Lumbar Interbody Cage Across the Vertebral Ring Apophysis Increase Loads Required for Failure and Mitigate Endplate Violation.
    Briski DC; Goel VK; Waddell BS; Serhan H; Kodigudla MK; Palepu V; Agarwal AK; Zavatsky JM
    Spine (Phila Pa 1976); 2017 Oct; 42(20):E1158-E1164. PubMed ID: 28472018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the structural properties of the lumbosacral vertebral endplates.
    Grant JP; Oxland TR; Dvorak MF
    Spine (Phila Pa 1976); 2001 Apr; 26(8):889-96. PubMed ID: 11317111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical analysis of thoracolumbar interbody constructs. How important is the endplate?
    Hollowell JP; Vollmer DG; Wilson CR; Pintar FA; Yoganandan N
    Spine (Phila Pa 1976); 1996 May; 21(9):1032-6. PubMed ID: 8724086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of design and positioning of carbon fiber lumbar interbody cages and their subsidence in vertebral bodies.
    Lam FC; Alkalay R; Groff MW
    J Spinal Disord Tech; 2012 Apr; 25(2):116-22. PubMed ID: 21430566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical effects of cage positions and facet fixation on initial stability of the anterior lumbar interbody fusion motion segment.
    Hueng DY; Chung TT; Chuang WH; Hsu CP; Chou KN; Lin SC
    Spine (Phila Pa 1976); 2014 Jun; 39(13):E770-6. PubMed ID: 24732834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of interbody cage positioning on lumbosacral vertebral endplate failure in compression.
    Labrom RD; Tan JS; Reilly CW; Tredwell SJ; Fisher CG; Oxland TR
    Spine (Phila Pa 1976); 2005 Oct; 30(19):E556-61. PubMed ID: 16205328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of disc degeneration and bone mineral density on the structural properties of lumbar end plates.
    Hou Y; Yuan W
    Spine J; 2012 Mar; 12(3):249-56. PubMed ID: 22366078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of endplate removal on the structural properties of the lower lumbar vertebral bodies.
    Oxland TR; Grant JP; Dvorak MF; Fisher CG
    Spine (Phila Pa 1976); 2003 Apr; 28(8):771-7. PubMed ID: 12698119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new bone surrogate model for testing interbody device subsidence.
    Au AG; Aiyangar AK; Anderson PA; Ploeg HL
    Spine (Phila Pa 1976); 2011 Jul; 36(16):1289-96. PubMed ID: 21311401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-cage reconstruction versus a single mega-cage reconstruction for lumbar interbody fusion: an experimental comparison.
    Murakami H; Horton WC; Tomita K; Hutton WC
    Eur Spine J; 2004 Aug; 13(5):432-40. PubMed ID: 15048561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of cervical endplate integrity following minimal surface preparation.
    Cheng CC; Ordway NR; Zhang X; Lu YM; Fang H; Fayyazi AH
    Spine (Phila Pa 1976); 2007 Aug; 32(17):1852-5. PubMed ID: 17762292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of interbody fusion cage design on the stability of the instrumented spine in response to cyclic loading: an experimental study.
    Alkalay RN; Adamson R; Groff MW
    Spine J; 2018 Oct; 18(10):1867-1876. PubMed ID: 29526639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.
    Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ
    Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical analysis of biodegradable interbody fusion cages augmented With poly(propylene glycol-co-fumaric acid).
    Kandziora F; Pflugmacher R; Kleemann R; Duda G; Wise DL; Trantolo DJ; Lewandrowski KU
    Spine (Phila Pa 1976); 2002 Aug; 27(15):1644-51. PubMed ID: 12163726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of the endplate for interbody cages in the lumbar spine.
    Polikeit A; Ferguson SJ; Nolte LP; Orr TE
    Eur Spine J; 2003 Dec; 12(6):556-61. PubMed ID: 12783287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.