BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 1550823)

  • 21. 31P NMR study of the guanine nucleotide binding of elongation factor Tu from Thermus thermophilus.
    Nakano A; Miyazawa T; Nakamura S; Kaziro Y
    FEBS Lett; 1980 Jul; 116(1):72-4. PubMed ID: 7409137
    [No Abstract]   [Full Text] [Related]  

  • 22. Sequence and identification of the nucleotide binding site for the elongation factor Tu from Thermus thermophilus HB8.
    Seidler L; Peter M; Meissner F; Sprinzl M
    Nucleic Acids Res; 1987 Nov; 15(22):9263-77. PubMed ID: 3317278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of potential structures for the G-domain of chloroplast EF-Tu using comparative molecular modeling.
    Lapadat MA; Deerfield DW; Pedersen LG; Spremulli LL
    Proteins; 1990; 8(3):237-50. PubMed ID: 2281086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The conformation of a catalytic loop is central to GTPase activity on the ribosome.
    Åqvist J; Kamerlin SC
    Biochemistry; 2015 Jan; 54(2):546-56. PubMed ID: 25515218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An isotope edited classical Raman difference spectroscopic study of the interactions of guanine nucleotides with elongation factor Tu and H-ras p21.
    Manor D; Weng GZ; Deng H; Cosloy S; Chen CX; Balogh-Nair V; Delaria K; Jurnak F; Callender R
    Biochemistry; 1991 Nov; 30(45):10914-20. PubMed ID: 1932015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Delayed release of inorganic phosphate from elongation factor Tu following GTP hydrolysis on the ribosome.
    Kothe U; Rodnina MV
    Biochemistry; 2006 Oct; 45(42):12767-74. PubMed ID: 17042495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proton nuclear magnetic resonance study on the roles of histidine residues in the binding of polypeptide chain elongation factor Tu from Thermus thermophilus with aminoacyl transfer ribonucleic acid and guanine nucleotides.
    Nakano A; Miyazawa T; Nakamura S; Kaziro Y
    Biochemistry; 1980 May; 19(10):2209-15. PubMed ID: 6900508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substitution of aspartic acid-80, a residue involved in coordination of magnesium, weakens the GTP binding and strongly enhances the GTPase of the G domain of elongation factor Tu.
    Harmark K; Anborgh PH; Merola M; Clark BF; Parmeggiani A
    Biochemistry; 1992 Aug; 31(32):7367-72. PubMed ID: 1510926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Functionally important sites in the elongation factor EF-Tu from Thermus aquaticus: analysis of fine structural changes upon binding of guanosine-3'-triphosphate and guanosine-3'-diphosphate].
    Brazhnikov EV; Chirgadze IuN
    Biofizika; 2001; 46(6):1027-37. PubMed ID: 11771276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of guanosine nucleotides and their analogs with elongation factor Tu from Thermus thermophilus.
    Wagner A; Simon I; Sprinzl M; Goody RS
    Biochemistry; 1995 Oct; 34(39):12535-42. PubMed ID: 7548001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational changes in the metal-binding sites of cardiac troponin C induced by calcium binding.
    Krudy GA; Brito RM; Putkey JA; Rosevear PR
    Biochemistry; 1992 Feb; 31(6):1595-602. PubMed ID: 1737016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural determination of the functional sites of E. coli elongation factor Tu.
    Clark BF; Kjeldgaard M; la Cour TF; Thirup S; Nyborg J
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):203-8. PubMed ID: 2207145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic properties of nucleotide-free EF-Tu from Thermus thermophilus in the presence of low-molecular weight effectors of its GTPase activity.
    Sedlák E; Zoldák G; Antalík M; Sprinzl M
    Biochim Biophys Acta; 2002 May; 1597(1):22-7. PubMed ID: 12009398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A chimeric elongation factor containing the putative guanine nucleotide binding domain of archaeal EF-1 alpha and the M and C domains of eubacterial EF-Tu.
    Arcari P; Masullo M; Arcucci A; Ianniciello G; de Paola B; Bocchini V
    Biochemistry; 1999 Sep; 38(38):12288-95. PubMed ID: 10493796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutagenesis of the NH2-terminal domain of elongation factor Tu.
    Gümüşel F; Cool RH; Weijland A; Anborgh PH; Parmeggiani A
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):215-21. PubMed ID: 2119812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular and functional properties of EF-Tu from Calderobacterium hydrogenophilum.
    Qiao CL
    Shi Yan Sheng Wu Xue Bao; 1992 Jun; 25(2):165-72. PubMed ID: 1414127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assignment of downfield proton resonances in purine nucleoside phosphorylase immucillin-H complex by saturation-transferred NOEs.
    Deng H; Lewandowicz A; Cahill SM; Furneaux RH; Tyler PC; Girvin ME; Callender RH; Schramm VL
    Biochemistry; 2004 Feb; 43(7):1980-7. PubMed ID: 14967038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spin-labelled analogues of GDP and GTP as site-specific reporter groups for guanosine nucleotide-binding proteins.
    Faulhammer HG; Denninger G; Härtl PJ; Azhayev AV; Schwoerer M; Sprinzl M
    Biochim Biophys Acta; 1986 Oct; 884(1):182-90. PubMed ID: 3021228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A kinetic safety gate controlling the delivery of unnatural amino acids to the ribosome.
    Mittelstaet J; Konevega AL; Rodnina MV
    J Am Chem Soc; 2013 Nov; 135(45):17031-8. PubMed ID: 24079513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.