BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 1550824)

  • 21. Structural basis of DNA recognition by anticancer antibiotics, chromomycin A(3), and mithramycin: roles of minor groove width and ligand flexibility.
    Chakrabarti S; Bhattacharyya D; Dasgupta D
    Biopolymers; 2000-2001; 56(2):85-95. PubMed ID: 11592055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of complexation of metal-mediated DNA-binding drugs to oligonucleotides via electrospray ionization mass spectrometry.
    Reyzer ML; Brodbelt JS; Kerwin SM; Kumar D
    Nucleic Acids Res; 2001 Nov; 29(21):E103-3. PubMed ID: 11691940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New DNA binding ligands as a model of chromomycin A3.
    Imoto S; Haruta Y; Watanabe K; Sasaki S
    Bioorg Med Chem Lett; 2004 Oct; 14(19):4855-9. PubMed ID: 15341939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of antitumor drug, mithramycin, with chromatin.
    Mir MA; Dasgupta D
    Biochem Biophys Res Commun; 2001 Jan; 280(1):68-74. PubMed ID: 11162479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR studies of the interaction of chromomycin A3 with small DNA duplexes. Binding to GC-containing sequences.
    Banville DL; Keniry MA; Kam M; Shafer RH
    Biochemistry; 1990 Jul; 29(27):6521-34. PubMed ID: 2207094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of mithramycin with chromatin.
    Mir MA; Dasgupta D
    Indian J Biochem Biophys; 2001; 38(1-2):71-4. PubMed ID: 11563335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Association of chromatin with anticancer antibiotics, mithramycin and chromomycin A3.
    Mir MA; Majee S; Das S; Dasgupta D
    Bioorg Med Chem; 2003 Jul; 11(13):2791-801. PubMed ID: 12788353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mode of action of antitumour antibiotics. spectrophotometric studies on the interaction of chromomycin A3 with DNA and chromatin of normal and neoplastic tissue.
    Nayak R; Sirsi M; Podder K
    Biochim Biophys Acta; 1975 Jan; 378(2):195-204. PubMed ID: 1125225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromomycin dimer-DNA oligomer complexes. Sequence selectivity and divalent cation specificity.
    Gao XL; Patel DJ
    Biochemistry; 1990 Dec; 29(49):10940-56. PubMed ID: 2176890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The crucial role of divalent metal ions in the DNA-acting efficacy and inhibition of the transcription of dimeric chromomycin A3.
    Hsu CW; Chuang SM; Wu WL; Hou MH
    PLoS One; 2012; 7(9):e43792. PubMed ID: 22984445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The impact of spermine competition on the efficacy of DNA-binding Fe(II), Co(II), and Cu(II) complexes of dimeric chromomycin A(3).
    Lu WJ; Wang HM; Yuann JM; Huang CY; Hou MH
    J Inorg Biochem; 2009 Dec; 103(12):1626-33. PubMed ID: 19800127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NMR investigation of mithramycin A binding to d(ATGCAT)2: a comparative study with chromomycin A3.
    Banville DL; Keniry MA; Shafer RH
    Biochemistry; 1990 Oct; 29(39):9294-304. PubMed ID: 2148686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Mg2+ and Cd2+ on the interaction between sparfloxacin and calf thymus DNA.
    Yuan XY; Guo DS; Wang LL
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Apr; 69(4):1130-5. PubMed ID: 17660000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies of sequence-specific DNA binding, DNA cleavage, and topoisomerase I inhibition by the dimeric chromomycin A3 complexed with Fe(II).
    Hou MH; Lu WJ; Lin HY; Yuann JM
    Biochemistry; 2008 May; 47(20):5493-502. PubMed ID: 18426223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of mg2+ in chromomycin a3 - DNA interaction: a molecular modeling study.
    Chakrabarti S; Dasgupta D; Bhattacharyya D
    J Biol Phys; 2000 Sep; 26(3):203-18. PubMed ID: 23345722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding and thermodynamics of REV peptide-ctDNA interaction.
    Upadhyay SK
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27353011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multivariate spectrochemical analysis of interactions of three common Isatin derivatives to calf thymus DNA in vitro.
    Shahbazy M; Pakravan P; Kompany-Zareh M
    J Biomol Struct Dyn; 2017 Sep; 35(12):2539-2556. PubMed ID: 27593978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromomycin, mithramycin, and olivomycin binding sites on heterogeneous deoxyribonucleic acid. Footprinting with (methidiumpropyl-EDTA)iron(II).
    Van Dyke MW; Dervan PB
    Biochemistry; 1983 May; 22(10):2373-7. PubMed ID: 6222762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of a copper (II) complex containing an artificial sweetener (aspartame) with calf thymus DNA.
    Shahabadi N; Khodaei MM; Kashanian S; Kheirdoosh F
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():1-6. PubMed ID: 24177861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis.
    Rudra S; Dasmandal S; Patra C; Kundu A; Mahapatra A
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Sep; 166():84-94. PubMed ID: 27214273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.