These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 1550826)
1. Importance of a conserved residue, aspartate-162, for the function of Escherichia coli aspartate transcarbamoylase. Newton CJ; Stevens RC; Kantrowitz ER Biochemistry; 1992 Mar; 31(11):3026-32. PubMed ID: 1550826 [TBL] [Abstract][Full Text] [Related]
2. Weakening of the interface between adjacent catalytic chains promotes domain closure in Escherichia coli aspartate transcarbamoylase. Baker DP; Fetler L; Keiser RT; Vachette P; Kantrowitz ER Protein Sci; 1995 Feb; 4(2):258-67. PubMed ID: 7757014 [TBL] [Abstract][Full Text] [Related]
3. The allosteric activator ATP induces a substrate-dependent alteration of the quaternary structure of a mutant aspartate transcarbamoylase impaired in active site closure. Baker DP; Fetler L; Vachette P; Kantrowitz ER Protein Sci; 1996 Nov; 5(11):2276-86. PubMed ID: 8931146 [TBL] [Abstract][Full Text] [Related]
4. Threonine 82 in the regulatory chain is important for nucleotide affinity and for the allosteric stabilization of Escherichia coli aspartate transcarbamoylase. Williams MK; Kantrowitz ER Biochim Biophys Acta; 1998 Dec; 1429(1):249-58. PubMed ID: 9920401 [TBL] [Abstract][Full Text] [Related]
5. Importance of domain closure for homotropic cooperativity in Escherichia coli aspartate transcarbamylase. Newton CJ; Kantrowitz ER Biochemistry; 1990 Feb; 29(6):1444-51. PubMed ID: 2185840 [TBL] [Abstract][Full Text] [Related]
6. Function of threonine-55 in the carbamoyl phosphate binding site of Escherichia coli aspartate transcarbamoylase. Xu W; Kantrowitz ER Biochemistry; 1989 Dec; 28(26):9937-43. PubMed ID: 2515892 [TBL] [Abstract][Full Text] [Related]
7. Importance of residues Arg-167 and Gln-231 in both the allosteric and catalytic mechanisms of Escherichia coli aspartate transcarbamoylase. Stebbins JW; Zhang Y; Kantrowitz ER Biochemistry; 1990 Apr; 29(16):3821-7. PubMed ID: 2191720 [TBL] [Abstract][Full Text] [Related]
8. A single amino acid substitution in the active site of Escherichia coli aspartate transcarbamoylase prevents the allosteric transition. Stieglitz KA; Pastra-Landis SC; Xia J; Tsuruta H; Kantrowitz ER J Mol Biol; 2005 Jun; 349(2):413-23. PubMed ID: 15890205 [TBL] [Abstract][Full Text] [Related]
9. The conserved residues glutamate-37, aspartate-100, and arginine-269 are important for the structural stabilization of Escherichia coli aspartate transcarbamoylase. Baker DP; Kantrowitz ER Biochemistry; 1993 Sep; 32(38):10150-8. PubMed ID: 8104480 [TBL] [Abstract][Full Text] [Related]
10. Different amino acid substitutions at the same position in the nucleotide-binding site of aspartate transcarbamoylase have diverse effects on the allosteric properties of the enzyme. Wente SR; Schachman HK J Biol Chem; 1991 Nov; 266(31):20833-9. PubMed ID: 1939134 [TBL] [Abstract][Full Text] [Related]
11. The 80s loop of the catalytic chain of Escherichia coli aspartate transcarbamoylase is critical for catalysis and homotropic cooperativity. Macol C; Dutta M; Stec B; Tsuruta H; Kantrowitz ER Protein Sci; 1999 Jun; 8(6):1305-13. PubMed ID: 10386880 [TBL] [Abstract][Full Text] [Related]
12. The use of alanine scanning mutagenesis to determine the role of the N-terminus of the regulatory chain in the heterotropic mechanism of Escherichia coli aspartate transcarbamoylase. Dembowski NJ; Kantrowitz ER Protein Eng; 1994 May; 7(5):673-9. PubMed ID: 8073037 [TBL] [Abstract][Full Text] [Related]
13. Replacement of Asp-162 by Ala prevents the cooperative transition by the substrates while enhancing the effect of the allosteric activator ATP on E. coli aspartate transcarbamoylase. Fetler L; Tauc P; Baker DP; Macol CP; Kantrowitz ER; Vachette P Protein Sci; 2002 May; 11(5):1074-81. PubMed ID: 11967364 [TBL] [Abstract][Full Text] [Related]
14. The contribution of individual interchain interactions to the stabilization of the T and R states of Escherichia coli aspartate transcarbamoylase. Sakash JB; Kantrowitz ER J Biol Chem; 2000 Sep; 275(37):28701-7. PubMed ID: 10875936 [TBL] [Abstract][Full Text] [Related]
15. Stabilization of the R allosteric structure of Escherichia coli aspartate transcarbamoylase by disulfide bond formation. West JM; Tsuruta H; Kantrowitz ER J Biol Chem; 2002 Dec; 277(49):47300-4. PubMed ID: 12359710 [TBL] [Abstract][Full Text] [Related]
16. Three of the six possible intersubunit stabilizing interactions involving Glu-239 are sufficient for restoration of the homotropic and heterotropic properties of Escherichia coli aspartate transcarbamoylase. Sakash JB; Chan RS; Tsuruta H; Kantrowitz ER J Biol Chem; 2000 Jan; 275(2):752-8. PubMed ID: 10625604 [TBL] [Abstract][Full Text] [Related]
17. Function of serine-171 in domain closure, cooperativity, and catalysis in Escherichia coli aspartate transcarbamoylase. Dembowski NJ; Newton CJ; Kantrowitz ER Biochemistry; 1990 Apr; 29(15):3716-23. PubMed ID: 2111165 [TBL] [Abstract][Full Text] [Related]
18. A loop involving catalytic chain residues 230-245 is essential for the stabilization of both allosteric forms of Escherichia coli aspartate transcarbamylase. Middleton SA; Stebbins JW; Kantrowitz ER Biochemistry; 1989 Feb; 28(4):1617-26. PubMed ID: 2655696 [TBL] [Abstract][Full Text] [Related]
19. Glutamic acid 86 is important for positioning the 80's loop and arginine 54 at the active site of Escherichia coli aspartate transcarbamoylase and for the structural stabilization of the C1-C2 interface. Baker DP; Stebbins JW; DeSena E; Kantrowitz ER J Biol Chem; 1994 Oct; 269(40):24608-14. PubMed ID: 7929132 [TBL] [Abstract][Full Text] [Related]
20. The role of intersubunit interactions for the stabilization of the T state of Escherichia coli aspartate transcarbamoylase. Chan RS; Sakash JB; Macol CP; West JM; Tsuruta H; Kantrowitz ER J Biol Chem; 2002 Dec; 277(51):49755-60. PubMed ID: 12399459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]