BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1550857)

  • 1. Fluorescence quenching measurements of the membrane bound lipid haptens with different length spacers.
    Kimura K; Arata Y; Yasuda T; Kinosita K; Nakanishi M
    Biochim Biophys Acta; 1992 Feb; 1104(1):9-14. PubMed ID: 1550857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Location of membrane-bound hapten with different length spacers.
    Kimura K; Arata Y; Yasuda T; Kinosita K; Nakanishi M
    Immunology; 1990 Feb; 69(2):323-8. PubMed ID: 2307487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liposomes as models to study the distribution of porphyrins in cell membranes.
    Ricchelli F; Jori G; Gobbo S; Tronchin M
    Biochim Biophys Acta; 1991 May; 1065(1):42-8. PubMed ID: 2043650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and dynamical aspects of membrane immunochemistry using model membranes.
    Brûlet P; McConnell HM
    Biochemistry; 1977 Mar; 16(6):1209-17. PubMed ID: 191064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partition of malathion in synthetic and native membranes.
    Antunes-Madeira MC; Madeira VM
    Biochim Biophys Acta; 1987 Jul; 901(1):61-6. PubMed ID: 3593726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calorimetric and fluorescence characterization of interactions between enkephalins and liposomal and synaptic plasma membranes containing gangliosides.
    Myers M; Freire E
    Biochemistry; 1985 Jul; 24(15):4076-82. PubMed ID: 3840386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-lactalbumin binding to membranes: evidence for a partially buried protein.
    Berliner LJ; Koga K
    Biochemistry; 1987 Jun; 26(11):3006-9. PubMed ID: 3607005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The partition and distribution of porphyrins in liposomal membranes. A spectroscopic study.
    Gross E; Ehrenberg B
    Biochim Biophys Acta; 1989 Jul; 983(1):118-22. PubMed ID: 2527063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of antibodies with liposomes bearing fluorescent haptens.
    Petrossian A; Owicki JC
    Biochim Biophys Acta; 1984 Oct; 776(2):217-27. PubMed ID: 6477908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quenching of fluorescein-conjugated lipids by antibodies. Quantitative recognition and binding of lipid-bound haptens in biomembrane models, formation of two-dimensional protein domains and molecular dynamics simulations.
    Ahlers M; Grainger DW; Herron JN; Lim K; Ringsdorf H; Salesse C
    Biophys J; 1992 Sep; 63(3):823-38. PubMed ID: 1420916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol: free radical peroxidation and transfer into phospholipid membranes.
    Barclay LR; Cameron RC; Forrest BJ; Locke SJ; Nigam R; Vinqvist MR
    Biochim Biophys Acta; 1990 Dec; 1047(3):255-63. PubMed ID: 2252912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic properties of the haptenic site of lipid haptens in phosphatidylcholine membranes. Their relation to the phase transition of the host lattice.
    Takeshita K; Utsumi H; Hamada A
    Biophys J; 1987 Aug; 52(2):187-97. PubMed ID: 2822160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triggering of the macrophage and neutrophil respiratory burst by antibody bound to a spin-label phospholipid hapten in model lipid bilayer membranes.
    Hafeman DG; Lewis JT; McConnell HM
    Biochemistry; 1980 Nov; 19(23):5387-94. PubMed ID: 6893805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of cholesterol on the association of plasma proteins with liposomes.
    Semple SC; Chonn A; Cullis PR
    Biochemistry; 1996 Feb; 35(8):2521-5. PubMed ID: 8611555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Interaction of melittin with model membranes: effect on the size and permeability of liposomes].
    Kostrzhevskaia EG; Shcherbatskaia NV; Veklich IuI
    Ukr Biokhim Zh (1978); 1989; 61(5):77-84. PubMed ID: 2588351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of DMPC or DPPC by pancreatic phospholipase A2 is slowed down when (perfluoroalkyl) alkanes are incorporated into the liposomal membrane.
    Privitera N; Naon R; Riess JG
    Biochim Biophys Acta; 1995 Jan; 1254(1):1-6. PubMed ID: 7811738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of liposomal cholesterol and monophosphoryl lipid A by QS-21 saponin and Limulus polyphemus amebocyte lysate.
    Beck Z; Matyas GR; Alving CR
    Biochim Biophys Acta; 2015 Mar; 1848(3):775-80. PubMed ID: 25511587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of palmitoyl phosphatidylcholine, sphingomyelin, and dihydrosphingomyelin bilayer membranes as reported by different fluorescent reporter molecules.
    Nyholm T; Nylund M; Söderholm A; Slotte JP
    Biophys J; 2003 Feb; 84(2 Pt 1):987-97. PubMed ID: 12547780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of membrane micellization by the hydrophobic polyelectrolyte poly(2-ethylacrylic acid).
    Thomas JL; Devlin BP; Tirrell DA
    Biochim Biophys Acta; 1996 Jan; 1278(1):73-8. PubMed ID: 8611610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations and experimental studies of binding and mobility of 7-tert-butyldimethylsilyl-10-hydroxycamptothecin and its 20(S)-4-aminobutyrate ester in DMPC membranes.
    Xiang TX; Jiang ZQ; Song L; Anderson BD
    Mol Pharm; 2006; 3(5):589-600. PubMed ID: 17009858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.