These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1550883)

  • 1. Time optimality in the control of human movements.
    Happee R
    Biol Cybern; 1992; 66(4):357-66. PubMed ID: 1550883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of the elements of the triphasic control signal.
    Hannaford B; Stark L
    Exp Neurol; 1985 Dec; 90(3):619-34. PubMed ID: 4065278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of agonist and antagonist muscles in fast arm movements in man.
    Wierzbicka MM; Wiegner AW; Shahani BT
    Exp Brain Res; 1986; 63(2):331-40. PubMed ID: 3758250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid goal-directed elbow flexion movements: limitations of the speed control system due to neural constraints.
    Benecke R; Meinck HM; Conrad B
    Exp Brain Res; 1985; 59(3):470-7. PubMed ID: 4029322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ballistic flexion movements of the human thumb.
    Hallett M; Marsden CD
    J Physiol; 1979 Sep; 294():33-50. PubMed ID: 512949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Costs of position, velocity, and force requirements in optimal control induce triphasic muscle activation during reaching movement.
    Ueyama Y
    Sci Rep; 2021 Aug; 11(1):16815. PubMed ID: 34413346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of expected perturbations on the velocity control of fast arm abduction movements.
    Pantaleo T; Benvenuti F; Bandinelli S; Mencarelli MA; Baroni A
    Exp Neurol; 1988 Sep; 101(3):313-26. PubMed ID: 3416977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Late agonist activation burst (PC) required for optimal head movement: a simulation study.
    Hannaford B; Stark L
    Biol Cybern; 1987; 57(4-5):321-30. PubMed ID: 3689840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are complex control signals required for human arm movement?
    Gribble PL; Ostry DJ; Sanguineti V; Laboissière R
    J Neurophysiol; 1998 Mar; 79(3):1409-24. PubMed ID: 9497421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement related EMGs become more variable during learning of fast accurate movements.
    Darling WG; Cooke WG
    J Mot Behav; 1987 Sep; 19(3):311-31. PubMed ID: 14988050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Step-tracking movements of the wrist. IV. Muscle activity associated with movements in different directions.
    Hoffman DS; Strick PL
    J Neurophysiol; 1999 Jan; 81(1):319-33. PubMed ID: 9914292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement-related phasic muscle activation. II. Generation and functional role of the triphasic pattern.
    Cooke JD; Brown SH
    J Neurophysiol; 1990 Mar; 63(3):465-72. PubMed ID: 2329356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement-related phasic muscle activation. III. The duration of phasic agonist activity initiating movement.
    Cooke JD; Brown SH
    Exp Brain Res; 1994; 99(3):473-82. PubMed ID: 7957727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The function of the antagonist muscle during fast limb movements in man.
    Marsden CD; Obeso JA; Rothwell JC
    J Physiol; 1983 Feb; 335():1-13. PubMed ID: 6875870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between EMG patterns and kinematic properties for flexion movements at the human wrist.
    Mustard BE; Lee RG
    Exp Brain Res; 1987; 66(2):247-56. PubMed ID: 3595772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of voluntary trunk movements in man. Mechanisms for postural equilibrium during standing.
    Oddsson LI
    Acta Physiol Scand Suppl; 1990; 595():1-60. PubMed ID: 2080712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between control, kinematic and electromyographic variables in fast single-joint movements in humans.
    Feldman AG; Adamovich SV; Levin MF
    Exp Brain Res; 1995; 103(3):440-50. PubMed ID: 7789450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.