BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 15509227)

  • 21. Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis).
    Tan FC; Swain SM
    Physiol Plant; 2007 Nov; 131(3):481-95. PubMed ID: 18251886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional analyses of genetic pathways controlling petal specification in poppy.
    Drea S; Hileman LC; de Martino G; Irish VF
    Development; 2007 Dec; 134(23):4157-66. PubMed ID: 17959716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [MADS-box genes controlling inflorescence morphogenesis in sunflower].
    Shul'ga OA; Shennikova AV; Angenent GS; Skriabin KG
    Ontogenez; 2008; 39(1):4-7. PubMed ID: 18409375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flower Development and Perianth Identity Candidate Genes in the Basal Angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae).
    Pabón-Mora N; Suárez-Baron H; Ambrose BA; González F
    Front Plant Sci; 2015; 6():1095. PubMed ID: 26697047
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two AGAMOUS-like MADS-box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions.
    Lü S; Du X; Lu W; Chong K; Meng Z
    Evol Dev; 2007; 9(1):92-104. PubMed ID: 17227369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ABC model and the diversification of floral organ identity.
    Litt A; Kramer EM
    Semin Cell Dev Biol; 2010 Feb; 21(1):129-37. PubMed ID: 19948236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs.
    Prasad K; Parameswaran S; Vijayraghavan U
    Plant J; 2005 Sep; 43(6):915-28. PubMed ID: 16146529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus.
    Teixeira RT; Farbos I; Glimelius K
    Plant J; 2005 Jun; 42(5):731-42. PubMed ID: 15918886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the origin of floral morphological novelties.
    He C; Münster T; Saedler H
    FEBS Lett; 2004 Jun; 567(1):147-51. PubMed ID: 15165908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids.
    Horn S; Pabón-Mora N; Theuß VS; Busch A; Zachgo S
    Plant J; 2015 Feb; 81(4):559-71. PubMed ID: 25557238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development.
    Yang Y; Xiang H; Jack T
    Plant J; 2003 Jan; 33(1):177-88. PubMed ID: 12943551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression.
    Castillejo C; Romera-Branchat M; Pelaz S
    Plant J; 2005 Aug; 43(4):586-96. PubMed ID: 16098111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers.
    Carlsson J; Lagercrantz U; Sundström J; Teixeira R; Wellmer F; Meyerowitz EM; Glimelius K
    Plant J; 2007 Feb; 49(3):452-62. PubMed ID: 17217466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The double-corolla phenotype in the Hawaiian lobelioid genus Clermontia involves ectopic expression of PISTILLATA B-function MADS box gene homologs.
    Hofer KA; Ruonala R; Albert VA
    Evodevo; 2012 Nov; 3(1):26. PubMed ID: 23116179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and expression of floral organ homeotic genes from Alpinia oblongifolia (Zingiberaceae).
    Xia YM; Gao XM; Li QJ
    J Integr Plant Biol; 2009 Feb; 51(2):155-66. PubMed ID: 19200154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the APETALA3- and PISTILLATA-like genes in Hedyosmum orientale (Chloranthaceae) provides insight into the evolution of the floral homeotic B-function in angiosperms.
    Liu S; Sun Y; Du X; Xu Q; Wu F; Meng Z
    Ann Bot; 2013 Nov; 112(7):1239-51. PubMed ID: 23956161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An APETALA3 homolog controls both petal identity and floral meristem patterning in Nigella damascena L. (Ranunculaceae).
    Gonçalves B; Nougué O; Jabbour F; Ridel C; Morin H; Laufs P; Manicacci D; Damerval C
    Plant J; 2013 Oct; 76(2):223-35. PubMed ID: 23855996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana.
    Chang YY; Chiu YF; Wu JW; Yang CH
    Plant Cell Physiol; 2009 Aug; 50(8):1425-38. PubMed ID: 19541596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots.
    Ronse De Craene LP
    Ann Bot; 2007 Sep; 100(3):621-30. PubMed ID: 17513305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum.
    Masiero S; Li MA; Will I; Hartmann U; Saedler H; Huijser P; Schwarz-Sommer Z; Sommer H
    Development; 2004 Dec; 131(23):5981-90. PubMed ID: 15539492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.