These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15509634)

  • 61. Adventitious rooting of Chrysanthemum is stimulated by a low red:far-red ratio.
    Christiaens A; Gobin B; Van Huylenbroeck J; Van Labeke MC
    J Plant Physiol; 2019 May; 236():117-123. PubMed ID: 30974405
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Restoring South African subtropical succulent thicket using
    Galuszynski NC; Forbes RE; Rishworth GM; Potts AJ
    PeerJ; 2023; 11():e15538. PubMed ID: 37601260
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings.
    Birlanga V; Villanova J; Cano A; Cano EA; Acosta M; Pérez-Pérez JM
    PLoS One; 2015; 10(7):e0133123. PubMed ID: 26230608
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Adventitious root formation is dynamically regulated by various hormones in leaf-vegetable sweetpotato cuttings.
    Pan R; Liu Y; Buitrago S; Jiang W; Gao H; Han H; Wu C; Wang Y; Zhang W; Yang X
    J Plant Physiol; 2020 Oct; 253():153267. PubMed ID: 32858442
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of Different Growth Regulators on the Rooting of
    Quan J; Ni R; Wang Y; Sun J; Ma M; Bi H
    Life (Basel); 2022 Aug; 12(8):. PubMed ID: 36013410
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Integrating histology and phytohormone/metabolite profiling to understand rooting in yellow camellia cuttings.
    Lu X; Chen X; Liu J; Zheng M; Liang H
    Plant Sci; 2024 Sep; 346():112160. PubMed ID: 38908800
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.).
    Wei K; Wang LY; Wu LY; Zhang CC; Li HL; Tan LQ; Cao HL; Cheng H
    PLoS One; 2014; 9(9):e107201. PubMed ID: 25216187
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Cutting propagation of Periploca forrestii and dynamic analyses of physiological and biochemical characteristitics related to adventitious roots formation].
    Gao J; Zeng XF; Liu XH; Yang SX
    Zhong Yao Cai; 2011 Jun; 34(6):841-5. PubMed ID: 22016997
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Overexpression of RoDELLA impacts the height, branching, and flowering behaviour of Pelargonium × domesticum transgenic plants.
    Hamama L; Naouar A; Gala R; Voisine L; Pierre S; Jeauffre J; Cesbron D; Leplat F; Foucher F; Dorion N; Hibrand-Saint Oyant L
    Plant Cell Rep; 2012 Nov; 31(11):2015-29. PubMed ID: 22898902
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mist, substrate water potential and cutting water potential influence rooting of stem cuttings of loblolly pine.
    Lebude AV; Goldfarb B; Blazich FA; Wise FC; Frampton J
    Tree Physiol; 2004 Jul; 24(7):823-31. PubMed ID: 15123454
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Isolation and characterization of a cDNA clone encoding an auxin influx carrier in carnation cuttings. Expression in different organs and cultivars and its relationship with cold storage.
    Oliveros-Valenzuela Mdel R; Reyes D; Sánchez-Bravo J; Acosta M; Nicolás C
    Plant Physiol Biochem; 2008 Dec; 46(12):1071-6. PubMed ID: 18762430
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The role of sugars in integrating environmental signals during the regulation of leaf senescence.
    Wingler A; Purdy S; MacLean JA; Pourtau N
    J Exp Bot; 2006; 57(2):391-9. PubMed ID: 16157653
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Rooting ability of rice seedlings increases with higher soluble sugar content from exposure to light.
    Zhou W; Qi Z; Chen J; Tan Z; Wang H; Wang C; Yi Z
    PLoS One; 2020; 15(10):e0241060. PubMed ID: 33079962
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings.
    Druege U; Franken P; Hajirezaei MR
    Front Plant Sci; 2016; 7():381. PubMed ID: 27064322
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Light dependent promotion and inhibition of adventitious root formation by gibberellic acid.
    Hansen J
    Planta; 1975 Jan; 123(2):203-5. PubMed ID: 24435089
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development.
    Sorin C; Negroni L; Balliau T; Corti H; Jacquemot MP; Davanture M; Sandberg G; Zivy M; Bellini C
    Plant Physiol; 2006 Jan; 140(1):349-64. PubMed ID: 16377752
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Novel insights into the role of leaf in the cutting process of Camellia sinensis using physiological, biochemical and transcriptome analyses.
    Zhang H; Chen B; Zhao X; Hu J; Dong Z; Xiao H; Yuan Y; Guo F; Wang Y; Ni D; Wang P
    Tree Physiol; 2023 Nov; 43(11):2031-2045. PubMed ID: 37742093
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen.
    Kobe RK; Iyer M; Walters MB
    Ecology; 2010 Jan; 91(1):166-79. PubMed ID: 20380206
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Jasmonates act positively in adventitious root formation in petunia cuttings.
    Lischweski S; Muchow A; Guthörl D; Hause B
    BMC Plant Biol; 2015 Sep; 15():229. PubMed ID: 26394764
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Transcriptomic profiles of poplar (
    Yu Y; Meng N; Chen S; Zhang H; Liu Z; Wang Y; Jing Y; Wang Y; Chen S
    Front Genet; 2022; 13():968544. PubMed ID: 36160010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.