BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 15509722)

  • 1. Metabolomics of Lung Microdissections Reveals Region- and Sex-Specific Metabolic Effects of Acute Naphthalene Exposure in Mice.
    Stevens NC; Edwards PC; Tran LM; Ding X; Van Winkle LS; Fiehn O
    Toxicol Sci; 2021 Nov; 184(2):214-222. PubMed ID: 34498071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro airway models from mice, rhesus macaques, and humans maintain species differences in xenobiotic metabolism and cellular responses to naphthalene.
    Kelty J; Kovalchuk N; Uwimana E; Yin L; Ding X; Van Winkle L
    Am J Physiol Lung Cell Mol Physiol; 2022 Sep; 323(3):L308-L328. PubMed ID: 35853015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment and Biodegradation of Polycyclic Aromatic Hydrocarbons in Soil and Water Around Petroleum Products Depot Suleja, Nigeria.
    Achife CE; Ijah UJJ; Oyeleke SB; Bala JD; Oyewole OA; Maddela NR; Prasad R
    Appl Biochem Biotechnol; 2024 May; 196(5):2819-2838. PubMed ID: 37676559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Health Effects of Naphthalene Exposure: A Systematic Evidence Map and Analysis of Potential Considerations for Dose-Response Evaluation.
    Yost EE; Galizia A; Kapraun DF; Persad AS; Vulimiri SV; Angrish M; Lee JS; Druwe IL
    Environ Health Perspect; 2021 Jul; 129(7):76002. PubMed ID: 34251878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice.
    Li L; Carratt S; Hartog M; Kovalchik N; Jia K; Wang Y; Zhang QY; Edwards P; Winkle LV; Ding X
    Environ Health Perspect; 2017 Jun; 125(6):067004. PubMed ID: 28599267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation and characterization of a CYP2A13/2B6/2F1-transgenic mouse model.
    Wei Y; Wu H; Li L; Liu Z; Zhou X; Zhang QY; Weng Y; D'Agostino J; Ling G; Zhang X; Kluetzman K; Yao Y; Ding X
    Drug Metab Dispos; 2012 Jun; 40(6):1144-50. PubMed ID: 22397853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of covalently bound protein adducts from the cytotoxicant naphthalene in nasal epithelium: species comparisons.
    DeStefano-Shields C; Morin D; Buckpitt A
    Environ Health Perspect; 2010 May; 118(5):647-52. PubMed ID: 20435546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of metabolic activation and the TRPA1 receptor in the sensory irritation response to styrene and naphthalene.
    Lanosa MJ; Willis DN; Jordt S; Morris JB
    Toxicol Sci; 2010 Jun; 115(2):589-95. PubMed ID: 20176620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of human cytochrome P450 2S1 using a synthetic gene-expressed protein in Escherichia coli.
    Bui PH; Hankinson O
    Mol Pharmacol; 2009 Nov; 76(5):1031-43. PubMed ID: 19713358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naphthalene metabolism in relation to target tissue anatomy, physiology, cytotoxicity and tumorigenic mechanism of action.
    Bogen KT; Benson JM; Yost GS; Morris JB; Dahl AR; Clewell HJ; Krishnan K; Omiecinski CJ
    Regul Toxicol Pharmacol; 2008 Jul; 51(2 Suppl):S27-36. PubMed ID: 18191315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of the CYP2ABFGST gene cluster in rat, and a fine-scale comparison among rodent and primate species.
    Hu S; Wang H; Knisely AA; Reddy S; Kovacevic D; Liu Z; Hoffman SM
    Genetica; 2008 Jun; 133(2):215-26. PubMed ID: 17876710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of murine cytochrome P-450 2F2 in metabolic activation of naphthalene and metabolism of other xenobiotics.
    Shultz MA; Choudary PV; Buckpitt AR
    J Pharmacol Exp Ther; 1999 Jul; 290(1):281-8. PubMed ID: 10381788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse specific lung tumors from CYP2F2-mediated cytotoxic metabolism: an endpoint/toxic response where data from multiple chemicals converge to support a mode of action.
    Cruzan G; Bus J; Banton M; Gingell R; Carlson G
    Regul Toxicol Pharmacol; 2009 Nov; 55(2):205-18. PubMed ID: 19589367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary bioactivation of trichloroethylene to chloral hydrate: relative contributions of CYP2E1, CYP2F, and CYP2B1.
    Forkert PG; Baldwin RM; Millen B; Lash LH; Putt DA; Shultz MA; Collins KS
    Drug Metab Dispos; 2005 Oct; 33(10):1429-37. PubMed ID: 15987776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic capabilities of CYP2F2 with various pulmonary toxicants and its relative abundance in mouse lung subcompartments.
    Shultz MA; Morin D; Chang AM; Buckpitt A
    J Pharmacol Exp Ther; 2001 Feb; 296(2):510-9. PubMed ID: 11160638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity and metabolism of methylnaphthalenes: comparison with naphthalene and 1-nitronaphthalene.
    Lin CY; Wheelock AM; Morin D; Baldwin RM; Lee MG; Taff A; Plopper C; Buckpitt A; Rohde A
    Toxicology; 2009 Jun; 260(1-3):16-27. PubMed ID: 19464565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactivation of the pulmonary toxicants naphthalene and 1-nitronaphthalene by rat CYP2F4.
    Baldwin RM; Shultz MA; Buckpitt AR
    J Pharmacol Exp Ther; 2005 Feb; 312(2):857-65. PubMed ID: 15509722
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.