BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 15510305)

  • 61. The complexation of a novel squaric bis(thiosemicarbazone); 3,4-bis{[(aminothioxomethyl)amino]azamethylene}cyclobut-ene-1,2-diol.
    Seleem HS; Ramadan AA; Taha A; Eid MF; Samy F
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Mar; 78(3):1097-104. PubMed ID: 21239220
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bifunctional 3-Hydroxy-4-Pyridinones as Potential Selective Iron(III) Chelators: Solution Studies and Comparison with Other Metals of Biological and Environmental Relevance.
    Irto A; Cardiano P; Chand K; Cigala RM; Crea F; De Stefano C; Santos MA
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885859
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The mechanism of adsorption of Ga-67 citrate to cultured cells.
    Orii H; Nakamura K
    Eur J Nucl Med; 1980 Apr; 5(2):155-8. PubMed ID: 7379818
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Selective extraction of histidine derivatives by metal affinity with a copper(II)-chelating ligand complex in an aqueous two-phase system.
    Oshima T; Oshima C; Baba Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 May; 990():73-9. PubMed ID: 25864007
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Targeting radiopharmaceuticals--II. Evaluation of new trivalent metal complexes with different overall charges.
    Sun Y; Mathias CJ; Welch MJ; Madsen SL; Martell AE
    Int J Rad Appl Instrum B; 1991; 18(3):323-30. PubMed ID: 2071445
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Membrane partition of bis-(3-hydroxy-4-pyridinonato) zinc(ii) complexes revealed by molecular dynamics simulations.
    Coimbra JTS; Brás NF; Fernandes PA; Rangel M; Ramos MJ
    RSC Adv; 2018 Jul; 8(48):27081-27090. PubMed ID: 35539964
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Design of a Water Soluble Fluorescent 3-Hydroxy-4-Pyridinone Ligand Active at Physiological pH Values.
    Leite A; Silva AM; Coutinho C; Cunha-Silva L; de Castro B; Rangel M
    J Fluoresc; 2016 Sep; 26(5):1773-85. PubMed ID: 27357392
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Chelating agents and their use in radiopharmaceutical sciences.
    Wängler B; Schirrmacher R; Bartenstein P; Wängler C
    Mini Rev Med Chem; 2011 Oct; 11(11):968-83. PubMed ID: 21762096
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Functionalization of Rhodamine Platforms with 3-Hydroxy-4-pyridinone Chelating Units and Its Fluorescence Behavior towards Fe(III).
    Queirós C; Vinhas S; Oliveira J; Leite A; Silva AMG; Rangel M
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268668
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A second generation MRI contrast agent for imaging zinc ions
    De León-Rodríguez LM; Lubag AJ; López JA; Andreu-de-Riquer G; Alvarado-Monzón JC; Sherry AD
    Medchemcomm; 2012 Apr; 3(4):480-483. PubMed ID: 24013159
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Interaction of rat muscle AMP aminohydrolase with chelating agents and metal ions.
    Raggi A; Ranieri M; Taponeco G; Ronca-Testoni S; Ronca G; Rossi CA
    FEBS Lett; 1970 Sep; 10(2):101-104. PubMed ID: 11945367
    [No Abstract]   [Full Text] [Related]  

  • 72. Synthesis of New Polymerizable Metal-Chelating Lipids.
    Roy BC; Mallik S
    J Org Chem; 1999 Apr; 64(8):2969-2974. PubMed ID: 11674380
    [No Abstract]   [Full Text] [Related]  

  • 73. A Valuable New Compound Metal.
    Am J Dent Sci; 1880 May; 14(1):43-44. PubMed ID: 30748611
    [No Abstract]   [Full Text] [Related]  

  • 74. Hydroxypyridinone-Based Metal Chelators towards Ecotoxicity: Remediation and Biological Mechanisms.
    Santos MA; Irto A; Buglyó P; Chaves S
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335329
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Solution speciation and human serum protein binding of indium(III) complexes of 8-hydroxyquinoline, deferiprone and maltol.
    Dömötör O; Keppler BK; Enyedy ÉA
    J Biol Inorg Chem; 2022 Apr; 27(3):315-328. PubMed ID: 35243522
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hydroxypyridinone-Diamine Hybrids as Potential Neuroprotective Agents in the PC12 Cell-Line Model of Alzheimer's Disease.
    Lohou E; Sasaki NA; Boullier A; Duplantier M; Sonnet P
    Pharmaceuticals (Basel); 2019 Oct; 12(4):. PubMed ID: 31717866
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The mono(catecholamine) derivatives as iron chelators: synthesis, solution thermodynamic stability and antioxidant properties research.
    Zhang Q; Jin B; Wang X; Lei S; Shi Z; Zhao J; Liu Q; Peng R
    R Soc Open Sci; 2018 Jun; 5(6):171492. PubMed ID: 30110407
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Novel enterobactin analogues as potential therapeutic chelating agents: Synthesis, thermodynamic and antioxidant studies.
    Zhang Q; Jin B; Shi Z; Wang X; Liu Q; Lei S; Peng R
    Sci Rep; 2016 Sep; 6():34024. PubMed ID: 27671769
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Synthesis of New Bis(3-hydroxy-4-pyridinone) Ligands as Chelating Agents for Uranyl Complexation.
    Jin B; Zheng R; Peng R; Chu S
    Molecules; 2016 Mar; 21(3):299. PubMed ID: 27005598
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Bifunctional 3-hydroxy-4-pyridinone derivatives as potential pharmaceuticals: synthesis, complexation with Fe(III), Al(III) and Ga(III) and in vivo evaluation with 67Ga.
    Santos MA; Gil M; Gano L; Chaves S
    J Biol Inorg Chem; 2005 Aug; 10(5):564-80. PubMed ID: 16133203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.