These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 15511)

  • 21. Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats.
    Braun M; Schoberth S; Gottschalk G
    Arch Microbiol; 1979 Mar; 120(3):201-4. PubMed ID: 571704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization.
    Pan X; Angelidaki I; Alvarado-Morales M; Liu H; Liu Y; Huang X; Zhu G
    Bioresour Technol; 2016 Oct; 218():796-806. PubMed ID: 27423547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation of methane in the absence of oxygen in lake water samples.
    Panganiban AT; Patt TE; Hart W; Hanson RS
    Appl Environ Microbiol; 1979 Feb; 37(2):303-9. PubMed ID: 434809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methane fermentation of rubber (Hevea brasiliensis) latex effluent.
    Rajagopalan K
    Can J Microbiol; 1976 Mar; 22(3):342-6. PubMed ID: 1252994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control on rate and pathway of anaerobic organic carbon degradation in the seabed.
    Beulig F; Røy H; Glombitza C; Jørgensen BB
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):367-372. PubMed ID: 29279408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium.
    Chen M; Wolin MJ
    Appl Environ Microbiol; 1977 Dec; 34(6):756-9. PubMed ID: 596874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria.
    Bryant MP; Campbell LL; Reddy CA; Crabill MR
    Appl Environ Microbiol; 1977 May; 33(5):1162-9. PubMed ID: 879775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature.
    Glissman K; Chin KJ; Casper P; Conrad R
    Microb Ecol; 2004 Oct; 48(3):389-99. PubMed ID: 15692859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations.
    Cappenberg TE
    Antonie Van Leeuwenhoek; 1974; 40(2):285-95. PubMed ID: 4599093
    [No Abstract]   [Full Text] [Related]  

  • 30. Anaerobic degradation of benzoate to methane by a microbial consortium.
    Ferry JG; Wolfe RS
    Arch Microbiol; 1976 Feb; 107(1):33-40. PubMed ID: 1252087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Source of carbon and hydrogen in methane produced from formate by Methanococcus thermolithotrophicus.
    Sparling R; Daniels L
    J Bacteriol; 1986 Dec; 168(3):1402-7. PubMed ID: 3782041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of temperature and high acetate concentrations on methanogenesis in lake sediment slurries.
    Nozhevnikova AN; Nekrasova V; Ammann A; Zehnder AJ; Wehrli B; Holliger C
    FEMS Microbiol Ecol; 2007 Dec; 62(3):336-44. PubMed ID: 17949433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri.
    Hutten TJ; Bongaerts HC; van der Drift C; Vogels GD
    Antonie Van Leeuwenhoek; 1980; 46(6):601-10. PubMed ID: 6786216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A stable isotope titration method to determine the contribution of acetate disproportionation and carbon dioxide reduction to methanogenesis.
    Gray ND; Matthews JN; Head IM
    J Microbiol Methods; 2006 Apr; 65(1):180-6. PubMed ID: 16099062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Study of the inhibitory effect of acetylene on the biological methane formation in a paddy soil (author's transl)].
    Raimbault M
    Ann Microbiol (Paris); 1975; 126(2):247-58. PubMed ID: 1155881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of a strain of Methanospirillum hungatti.
    Patel GB; Roth LA; van den Berg L; Clark DS
    Can J Microbiol; 1976 Sep; 22(9):1404-10. PubMed ID: 10074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous measurements of dissolved CH
    Pal DS; Tripathee R; Reid MC; Schäfer KVR; Jaffé PR
    Environ Monit Assess; 2018 Feb; 190(3):176. PubMed ID: 29484491
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria.
    Wu WM; Hickey RF; Zeikus JG
    Appl Environ Microbiol; 1991 Dec; 57(12):3438-49. PubMed ID: 1785921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium.
    Latham MJ; Wolin MJ
    Appl Environ Microbiol; 1977 Sep; 34(3):297-301. PubMed ID: 562131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved hydrogen production in the microbial electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation.
    Hou Y; Luo H; Liu G; Zhang R; Li J; Fu S
    Environ Sci Technol; 2014 Sep; 48(17):10482-8. PubMed ID: 25111871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.