BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 15511)

  • 41. Hydrogen 'leakage' during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments.
    Finke N; Hoehler TM; Jørgensen BB
    Environ Microbiol; 2007 Apr; 9(4):1060-71. PubMed ID: 17359276
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Partitioning effects during terminal carbon and electron flow in sediments of a low-salinity meltwater pond near Bratina Island, McMurdo Ice Shelf, Antarctica.
    Mountfort DO; Kaspar HF; Downes M; Asher RA
    Appl Environ Microbiol; 1999 Dec; 65(12):5493-9. PubMed ID: 10584008
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Roles of coenzyme F420-reducing hydrogenases and hydrogen- and F420-dependent methylenetetrahydromethanopterin dehydrogenases in reduction of F420 and production of hydrogen during methanogenesis.
    Hendrickson EL; Leigh JA
    J Bacteriol; 2008 Jul; 190(14):4818-21. PubMed ID: 18487331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment.
    Zhuang L; Ma J; Tang J; Tang Z; Zhou S
    Microb Ecol; 2017 May; 73(4):916-924. PubMed ID: 27815590
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetic parameters of the conversion of methane precursors to methane in a hypereutrophic lake sediment.
    Strayer RF; Tiedje JM
    Appl Environ Microbiol; 1978 Aug; 36(2):330-40. PubMed ID: 16345312
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Studies on an acetate-fermenting strain of Methanosarcina.
    Mah RA; Smith MR; Baresi L
    Appl Environ Microbiol; 1978 Jun; 35(6):1174-84. PubMed ID: 677880
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of acetogens and methanogens in anaerobic freshwater sediments.
    Jones JG; Simon BM
    Appl Environ Microbiol; 1985 Apr; 49(4):944-8. PubMed ID: 4004224
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Methanogenesis in freshwater sediments: inherent variability and effects of environmental contaminants.
    Pedersen D; Sayler GS
    Can J Microbiol; 1981 Feb; 27(2):198-205. PubMed ID: 7214238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Changes in proportions of acetate and carbon dioxide used as methane precursors during the anaerobic digestion of bovine waste.
    Mountfort DO; Asher RA
    Appl Environ Microbiol; 1978 Apr; 35(4):648-54. PubMed ID: 565615
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments.
    Cappenberg TE
    Antonie Van Leeuwenhoek; 1974; 40(2):297-306. PubMed ID: 4365468
    [No Abstract]   [Full Text] [Related]  

  • 51. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium.
    Zehnder AJ; Huser BA; Brock TD; Wuhrmann K
    Arch Microbiol; 1980 Jan; 124(1):1-11. PubMed ID: 6769415
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel).
    Nüsslein B; Chin KJ; Eckert W; Conrad R
    Environ Microbiol; 2001 Jul; 3(7):460-70. PubMed ID: 11553236
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190.
    Newberry CJ; Webster G; Cragg BA; Parkes RJ; Weightman AJ; Fry JC
    Environ Microbiol; 2004 Mar; 6(3):274-87. PubMed ID: 14871211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single-carbon catabolism in acetogens: analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13C nuclear magnetic resonance measurement.
    Kerby R; Niemczura W; Zeikus JG
    J Bacteriol; 1983 Sep; 155(3):1208-18. PubMed ID: 6411684
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolism of formate in Methanobacterium formicicum.
    Schauer NL; Ferry JG
    J Bacteriol; 1980 Jun; 142(3):800-7. PubMed ID: 6769911
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Methane production from acetate, formate and H
    Sun H; Yang Z; Shi G; Arhin SG; Papadakis VG; Goula MA; Zhou L; Zhang Y; Liu G; Wang W
    Sci Total Environ; 2021 Aug; 783():147581. PubMed ID: 34088123
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oxidation of hydrogen and reduction of methanol to methane is the sole energy source for a methanogen isolated from human feces.
    Miller TL; Wolin MJ
    J Bacteriol; 1983 Feb; 153(2):1051-5. PubMed ID: 6822473
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conductive Particles Enable Syntrophic Acetate Oxidation between
    Rotaru AE; Calabrese F; Stryhanyuk H; Musat F; Shrestha PM; Weber HS; Snoeyenbos-West OLO; Hall POJ; Richnow HH; Musat N; Thamdrup B
    mBio; 2018 May; 9(3):. PubMed ID: 29717006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments.
    Küsel K; Dorsch T; Acker G; Stackebrandt E; Drake HL
    Int J Syst Evol Microbiol; 2000 Mar; 50 Pt 2():537-546. PubMed ID: 10758858
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influences of pond geochemistry, temperature, and freeze-thaw on terminal anaerobic processes occurring in sediments of six ponds of the McMurdo Ice Shelf, near Bratina Island, Antarctica.
    Mountfort DO; Kaspar HF; Asher RA; Sutherland D
    Appl Environ Microbiol; 2003 Jan; 69(1):583-92. PubMed ID: 12514045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.