These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 15511183)

  • 1. Collisional line shapes for low frequency vibrations of adsorbates on a metal surface.
    Vega JL; Guantes R; Miret-Artés S; Micha DA
    J Chem Phys; 2004 Nov; 121(17):8580-8. PubMed ID: 15511183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hamiltonian theory for vibrational line shapes of atoms adsorbed on surfaces.
    Guantes R; Vega JL; Miret-Artes S; Pollak E
    J Chem Phys; 2004 Jun; 120(22):10768-79. PubMed ID: 15268103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density matrix treatment of the nonmarkovian dissipative dynamics of adsorbates on metal surfaces.
    Leathers AS; Micha DA
    J Phys Chem A; 2006 Jan; 110(2):749-55. PubMed ID: 16405349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: effect of donor vibrational mode.
    Mitchell DG; Johnson AM; Johnson JA; Judd KA; Kim K; Mayhew M; Powell AL; Sevy ET
    J Phys Chem A; 2008 Feb; 112(6):1157-67. PubMed ID: 18201072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density matrix treatment of combined instantaneous and delayed dissipation for an electronically excited adsorbate on a solid surface.
    Leathers AS; Micha DA; Kilin DS
    J Chem Phys; 2009 Oct; 131(14):144106. PubMed ID: 19831432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Feb; 124(5):054302. PubMed ID: 16468864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling, calculating, and analyzing multidimensional vibrational spectroscopies.
    Tanimura Y; Ishizaki A
    Acc Chem Res; 2009 Sep; 42(9):1270-9. PubMed ID: 19441802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiclassical extension of the Landau-Teller theory of collisional energy transfer.
    Dashevskaya EI; Litvin I; Nikitin EE; Troe J
    J Chem Phys; 2006 Oct; 125(15):154315. PubMed ID: 17059263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methane dissociation on Ni(111): the effects of lattice motion and relaxation on reactivity.
    Nave S; Jackson B
    J Chem Phys; 2007 Dec; 127(22):224702. PubMed ID: 18081409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational lifetimes of molecular adsorbates on metal surfaces.
    Krishna V; Tully JC
    J Chem Phys; 2006 Aug; 125(5):054706. PubMed ID: 16942240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane dissociation on Ni(111) and Pt(111): energetic and dynamical studies.
    Nave S; Jackson B
    J Chem Phys; 2009 Feb; 130(5):054701. PubMed ID: 19206983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trajectory study of supercollision relaxation in highly vibrationally excited pyrazine and CO2.
    Li Z; Sansom R; Bonella S; Coker DF; Mullin AS
    J Phys Chem A; 2005 Sep; 109(34):7657-66. PubMed ID: 16834139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density-functional theory study of vibrational relaxation of CO stretching excitation on Si(100).
    Sakong S; Kratzer P; Han X; Lass K; Weingart O; Hasselbrink E
    J Chem Phys; 2008 Nov; 129(17):174702. PubMed ID: 19045365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum trajectories in atom-surface scattering with single adsorbates: the role of quantum vortices.
    Sanz AS; Borondo F; Miret-Artés S
    J Chem Phys; 2004 May; 120(18):8794-806. PubMed ID: 15267811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational excitation through tug-of-war inelastic collisions.
    Greaves SJ; Wrede E; Goldberg NT; Zhang J; Miller DJ; Zare RN
    Nature; 2008 Jul; 454(7200):88-91. PubMed ID: 18596807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Nov; 125(20):204309. PubMed ID: 17144702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and dynamics of CO overlayers on a hydroxylated metal oxide: the polar ZnO(0001) surface.
    Kunat M; Meyer B; Traeger F; Wöll Ch
    Phys Chem Chem Phys; 2006 Apr; 8(13):1499-504. PubMed ID: 16633633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissipation in molecular junctions.
    Jorn R; Seideman T
    J Chem Phys; 2008 Nov; 129(19):194703. PubMed ID: 19026077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy transfer of highly vibrationally excited naphthalene: collisions with CHF3, CF4, and Kr.
    Chen Hsu H; Tsai MT; Dyakov YA; Ni CK
    J Chem Phys; 2011 Aug; 135(5):054311. PubMed ID: 21823704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.