These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15511526)

  • 41. CaATP as a substrate to investigate the myosin lever arm hypothesis of force generation.
    Polosukhina K; Eden D; Chinn M; Highsmith S
    Biophys J; 2000 Mar; 78(3):1474-81. PubMed ID: 10692332
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measurement of muscle fiber stiffness during stretch with two continuous different velocities in skeletal muscle fibers.
    Kobayashi T; Iwai M; Phan KN
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5811-4. PubMed ID: 18003334
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorescence properties and contraction characteristics of ANM (N-(1-anilinonaphthyl-4)maleimide)-labeled rabbit psoas muscle fibers.
    Chaen S; Shimada M; Sugi H
    J Biochem; 1985 Oct; 98(4):939-47. PubMed ID: 2934382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Depletion of phosphate in active muscle fibers probes actomyosin states within the powerstroke.
    Pate E; Franks-Skiba K; Cooke R
    Biophys J; 1998 Jan; 74(1):369-80. PubMed ID: 9449337
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of osmotic compression on the force-velocity properties of glycerinated rabbit skeletal muscle cells.
    Ford LE; Nakagawa K; Desper J; Seow CY
    J Gen Physiol; 1991 Jan; 97(1):73-88. PubMed ID: 1706756
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thin filament cooperativity as a major determinant of shortening velocity in skeletal muscle fibers.
    Iwamoto H
    Biophys J; 1998 Mar; 74(3):1452-64. PubMed ID: 9512041
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A non-cross-bridge stiffness in activated frog muscle fibers.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    Biophys J; 2002 Jun; 82(6):3118-27. PubMed ID: 12023235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition of unloaded shortening velocity in permeabilized muscle fibres by caged ATP compounds.
    Thirlwell H; Sleep JA; Ferenczi MA
    J Muscle Res Cell Motil; 1995 Apr; 16(2):131-7. PubMed ID: 7622628
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural features of cross-bridges in isometrically contracting skeletal muscle.
    Kraft T; Mattei T; Radocaj A; Piep B; Nocula C; Furch M; Brenner B
    Biophys J; 2002 May; 82(5):2536-47. PubMed ID: 11964242
    [TBL] [Abstract][Full Text] [Related]  

  • 51. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of denervation on ATP consumption rate of diaphragm muscle fibers.
    Sieck GC; Zhan WZ; Han YS; Prakash YS
    J Appl Physiol (1985); 2007 Sep; 103(3):858-66. PubMed ID: 17556500
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thymol: a classical small-molecule compound that has a dual effect (potentiating and inhibitory) on myosin.
    Tamura T; Iwamoto H
    Biochem Biophys Res Commun; 2004 Jun; 318(3):786-91. PubMed ID: 15144906
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ca-activation and stretch-activation in insect flight muscle.
    Linari M; Reedy MK; Reedy MC; Lombardi V; Piazzesi G
    Biophys J; 2004 Aug; 87(2):1101-11. PubMed ID: 15298914
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acceleration of the ATPase activity of glycerol-treated muscle fibers by repeated stretch-release cycles.
    Arata T; Mukohata Y; Tonomura Y
    J Biochem; 1978 Oct; 84(4):751-61. PubMed ID: 152310
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modification of the contractile properties of rabbit skeletal muscle by ethylene glycol.
    Maruyama T; Kometani K; Yamada K
    J Biochem; 1989 Jun; 105(6):1009-13. PubMed ID: 2768208
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Blebbistatin: use as inhibitor of muscle contraction.
    Farman GP; Tachampa K; Mateja R; Cazorla O; Lacampagne A; de Tombe PP
    Pflugers Arch; 2008 Mar; 455(6):995-1005. PubMed ID: 17994251
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of calcium on force-velocity characteristics of glycerinated skeletal muscle.
    Wise RM; Rondinone JF; Briggs FN
    Am J Physiol; 1971 Oct; 221(4):973-9. PubMed ID: 4255750
    [No Abstract]   [Full Text] [Related]  

  • 59. The influences of L(+)-lactate and pH on contractile performance in rabbit glycerinated skeletal muscle.
    Miyake S; Ishii Y; Watari T; Huang Z; Tsuchiya T
    Jpn J Physiol; 2003 Dec; 53(6):401-9. PubMed ID: 15038838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Force response to stretches in activated frog muscle fibres at low tension.
    Bagni MA; Colombini B; Colomo F; Geiger P; Berlinguer Palmini R; Cecchi G
    Adv Exp Med Biol; 2003; 538():429-38; discussion 438-9. PubMed ID: 15098689
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.