BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 15511632)

  • 1. Transgenic mouse expressing human mutant alpha-galactosidase A in an endogenous enzyme deficient background: a biochemical animal model for studying active-site specific chaperone therapy for Fabry disease.
    Ishii S; Yoshioka H; Mannen K; Kulkarni AB; Fan JQ
    Biochim Biophys Acta; 2004 Nov; 1690(3):250-7. PubMed ID: 15511632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased globotriaosylceramide levels in a transgenic mouse expressing human alpha1,4-galactosyltransferase and a mouse model for treating Fabry disease.
    Shiozuka C; Taguchi A; Matsuda J; Noguchi Y; Kunieda T; Uchio-Yamada K; Yoshioka H; Hamanaka R; Yano S; Yokoyama S; Mannen K; Kulkarni AB; Furukawa K; Ishii S
    J Biochem; 2011 Feb; 149(2):161-70. PubMed ID: 20961863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant alpha-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin.
    Ishii S; Chang HH; Kawasaki K; Yasuda K; Wu HL; Garman SC; Fan JQ
    Biochem J; 2007 Sep; 406(2):285-95. PubMed ID: 17555407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pharmacological chaperone 1-deoxygalactonojirimycin reduces tissue globotriaosylceramide levels in a mouse model of Fabry disease.
    Khanna R; Soska R; Lun Y; Feng J; Frascella M; Young B; Brignol N; Pellegrino L; Sitaraman SA; Desnick RJ; Benjamin ER; Lockhart DJ; Valenzano KJ
    Mol Ther; 2010 Jan; 18(1):23-33. PubMed ID: 19773742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines.
    Benjamin ER; Flanagan JJ; Schilling A; Chang HH; Agarwal L; Katz E; Wu X; Pine C; Wustman B; Desnick RJ; Lockhart DJ; Valenzano KJ
    J Inherit Metab Dis; 2009 Jun; 32(3):424-40. PubMed ID: 19387866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rescue of mutant alpha-galactosidase A in the endoplasmic reticulum by 1-deoxygalactonojirimycin leads to trafficking to lysosomes.
    Hamanaka R; Shinohara T; Yano S; Nakamura M; Yasuda A; Yokoyama S; Fan JQ; Kawasaki K; Watanabe M; Ishii S
    Biochim Biophys Acta; 2008 Jun; 1782(6):408-13. PubMed ID: 18381081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preclinical efficacy and safety of 1-deoxygalactonojirimycin in mice for Fabry disease.
    Ishii S; Chang HH; Yoshioka H; Shimada T; Mannen K; Higuchi Y; Taguchi A; Fan JQ
    J Pharmacol Exp Ther; 2009 Mar; 328(3):723-31. PubMed ID: 19106170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological chaperone therapy by active-site-specific chaperones in Fabry disease: in vitro and preclinical studies.
    Germain DP; Fan JQ
    Int J Clin Pharmacol Ther; 2009; 47 Suppl 1():S111-7. PubMed ID: 20040321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder.
    Yam GH; Zuber C; Roth J
    FASEB J; 2005 Jan; 19(1):12-8. PubMed ID: 15629890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants.
    Yam GH; Bosshard N; Zuber C; Steinmann B; Roth J
    Am J Physiol Cell Physiol; 2006 Apr; 290(4):C1076-82. PubMed ID: 16531566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor.
    Fan JQ; Ishii S; Asano N; Suzuki Y
    Nat Med; 1999 Jan; 5(1):112-5. PubMed ID: 9883849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term inhibition of glycosphingolipid accumulation in Fabry model mice by a single systemic injection of AAV1 vector in the neonatal period.
    Ogawa K; Hirai Y; Ishizaki M; Takahashi H; Hanawa H; Fukunaga Y; Shimada T
    Mol Genet Metab; 2009 Mar; 96(3):91-6. PubMed ID: 19091614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction of enzymatic and lysosomal storage defects in Fabry mice by adenovirus-mediated gene transfer.
    Ziegler RJ; Yew NS; Li C; Cherry M; Berthelette P; Romanczuk H; Ioannou YA; Zeidner KM; Desnick RJ; Cheng SH
    Hum Gene Ther; 1999 Jul; 10(10):1667-82. PubMed ID: 10428212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme replacement therapy partially prevents invariant Natural Killer T cell deficiency in the Fabry disease mouse model.
    Macedo MF; Quinta R; Pereira CS; Sa Miranda MC
    Mol Genet Metab; 2012 May; 106(1):83-91. PubMed ID: 22425450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergy between the pharmacological chaperone 1-deoxygalactonojirimycin and the human recombinant alpha-galactosidase A in cultured fibroblasts from patients with Fabry disease.
    Porto C; Pisani A; Rosa M; Acampora E; Avolio V; Tuzzi MR; Visciano B; Gagliardo C; Materazzi S; la Marca G; Andria G; Parenti G
    J Inherit Metab Dis; 2012 May; 35(3):513-20. PubMed ID: 22187137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular basis of pharmacological chaperoning in human α-galactosidase.
    Guce AI; Clark NE; Rogich JJ; Garman SC
    Chem Biol; 2011 Dec; 18(12):1521-6. PubMed ID: 22195554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic mRNA Therapy for the Treatment of Fabry Disease: Preclinical Studies in Wild-Type Mice, Fabry Mouse Model, and Wild-Type Non-human Primates.
    Zhu X; Yin L; Theisen M; Zhuo J; Siddiqui S; Levy B; Presnyak V; Frassetto A; Milton J; Salerno T; Benenato KE; Milano J; Lynn A; Sabnis S; Burke K; Besin G; Lukacs CM; Guey LT; Finn PF; Martini PGV
    Am J Hum Genet; 2019 Apr; 104(4):625-637. PubMed ID: 30879639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of 1-deoxygalactonojirimycin arylthiourea binding to human α-galactosidase a: pharmacological chaperoning efficacy on Fabry disease mutants.
    Yu Y; Mena-Barragán T; Higaki K; Johnson JL; Drury JE; Lieberman RL; Nakasone N; Ninomiya H; Tsukimura T; Sakuraba H; Suzuki Y; Nanba E; Mellet CO; García Fernández JM; Ohno K
    ACS Chem Biol; 2014 Jul; 9(7):1460-9. PubMed ID: 24783948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel mutations of the GLA gene in Japanese patients with Fabry disease and their functional characterization by active site specific chaperone.
    Shimotori M; Maruyama H; Nakamura G; Suyama T; Sakamoto F; Itoh M; Miyabayashi S; Ohnishi T; Sakai N; Wataya-Kaneda M; Kubota M; Takahashi T; Mori T; Tamura K; Kageyama S; Shio N; Maeba T; Yahagi H; Tanaka M; Oka M; Sugiyama H; Sugawara T; Mori N; Tsukamoto H; Tamagaki K; Tanda S; Suzuki Y; Shinonaga C; Miyazaki J; Ishii S; Gejyo F
    Hum Mutat; 2008 Feb; 29(2):331. PubMed ID: 18205205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active-site-specific chaperone therapy for Fabry disease. Yin and Yang of enzyme inhibitors.
    Fan JQ; Ishii S
    FEBS J; 2007 Oct; 274(19):4962-71. PubMed ID: 17894781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.