These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1551204)

  • 1. A method for measuring the rate of oxygen release from single microvessels.
    Tateishi N; Maeda N; Shiga T
    Circ Res; 1992 Apr; 70(4):812-9. PubMed ID: 1551204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Determination of the rate of oxygen release from flowing erythrocytes in a microvessel--development of an apparatus and the application to microvessels of rat mesentery].
    Tateishi N
    Nihon Seirigaku Zasshi; 1990; 52(2):23-35. PubMed ID: 2139703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible spectroscopic technique for flowing erythrocytes in capillary.
    Shiga T; Tateishi N; Maeda N
    Biorheology; 1990; 27(3-4):389-97. PubMed ID: 2261505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of oxygen saturation and distribution of erythrocytes in microvessels.
    Tateishi N; Suzuki Y; Tanaka J; Maeda N
    Microcirculation; 1997 Dec; 4(4):403-12. PubMed ID: 9431508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rate of oxygen release from single sinusoid of rat liver, determined by microspectroscopy.
    Yoshihara H; Fujita T; Harada N; Chen SS; Shiga T
    Med J Osaka Univ; 1993 Sep; 41-42(1-4):1-10. PubMed ID: 7476649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability.
    Suzuki Y; Tateishi N; Soutani M; Maeda N
    Microcirculation; 1996 Mar; 3(1):49-57. PubMed ID: 8846271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for measuring the rate of oxygen release from flowing erythrocytes in microvessels.
    Tateishi N; Maeda N; Shiga T
    Adv Exp Med Biol; 1990; 277():121-6. PubMed ID: 2096617
    [No Abstract]   [Full Text] [Related]  

  • 8. O(2) release from erythrocytes flowing in a narrow O(2)-permeable tube: effects of erythrocyte aggregation.
    Tateishi N; Suzuki Y; Cicha I; Maeda N
    Am J Physiol Heart Circ Physiol; 2001 Jul; 281(1):H448-56. PubMed ID: 11406514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O2 release from Hb vesicles evaluated using an artificial, narrow O2-permeable tube: comparison with RBCs and acellular Hbs.
    Sakai H; Suzuki Y; Kinoshita M; Takeoka S; Maeda N; Tsuchida E
    Am J Physiol Heart Circ Physiol; 2003 Dec; 285(6):H2543-51. PubMed ID: 12881206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential distribution of leukocytes in rat mesentery microvessel networks.
    Ley K; Pries AR; Gaehtgens P
    Pflugers Arch; 1988 Jul; 412(1-2):93-100. PubMed ID: 3174389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red cell velocity and microvessel diameter measurement by a two fluorescent tracer method under epifluorescence microscopy: application to cerebral microvessels of cats.
    Yamaguchi S; Yamakawa T; Niimi H
    Int J Microcirc Clin Exp; 1992 Nov; 11(4):403-16. PubMed ID: 1459799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Modeling of different degrees of microvessel laser-induced endothelium damage].
    Kondrat'ev AS; Mikhaĭlova IA; Petrishchev NN
    Ross Fiziol Zh Im I M Sechenova; 2013 Jun; 99(6):745-50. PubMed ID: 24459883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical analysis of hemoglobin spectrophotometry in microvessels.
    Patel S; Pittman RN
    Microvasc Res; 2001 Jul; 62(1):63-73. PubMed ID: 11421661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The time-space correlation method for measurement of erythrocyte velocity in microvessels using a CCD linear image sensor.
    Watanabe M; Senga Y; Shiga T; Minami S
    Microvasc Res; 1991 Jan; 41(1):41-6. PubMed ID: 1828853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
    Seylaz J; Charbonné R; Nanri K; Von Euw D; Borredon J; Kacem K; Méric P; Pinard E
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):863-70. PubMed ID: 10458593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of hemoglobin oxygen saturation using Raman microspectroscopy and 532-nm excitation.
    Torres Filho IP; Terner J; Pittman RN; Proffitt E; Ward KR
    J Appl Physiol (1985); 2008 Jun; 104(6):1809-17. PubMed ID: 18369097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microphotometric determination of hematocrit in small vessels.
    Pries AR; Kanzow G; Gaehtgens P
    Am J Physiol; 1983 Jul; 245(1):H167-77. PubMed ID: 6869557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cell velocity and oxygen tension measurement in cerebral microvessels by double-wavelength photoexcitation.
    Tsukada K; Sekizuka E; Oshio C; Tsujioka K; Minamitani H
    J Appl Physiol (1985); 2004 Apr; 96(4):1561-8. PubMed ID: 14660511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [An impulse-digital method of measuring blood flow velocity in microvessels].
    Golub' AS
    Biull Eksp Biol Med; 1975 Nov; 80(11):120-2. PubMed ID: 1218248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Changes in the mesenteric microcirculation of rats in acute hypoxic hypoxia].
    Ibragimov IuI; Mirzadaeva LA
    Biull Eksp Biol Med; 1976 Mar; 81(3):277-9. PubMed ID: 953264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.