These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 15512760)

  • 1. The effects of changing bone and muscle size on limb inertial properties and limb dynamics: a computer simulation.
    Dellanini L; Hawkins D; Martin B; Stover S
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):167-76. PubMed ID: 15512760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation of the interactions between lower-limb bone morphology, limb inertial properties and limb dynamics.
    Dellanini L; Hawkins D; Martin RB; Stover S
    J Biomech; 2003 Jul; 36(7):913-9. PubMed ID: 12757799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are fixed limb inertial models valid for dynamic simulations of human movement?
    Clark T; Hawkins D
    J Biomech; 2010 Oct; 43(14):2695-701. PubMed ID: 20673667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of different inertial parameter sets on joint moment calculation during stair ascending and descending.
    Fantozzi S; Stagni R; Cappello A; Leardini A
    Med Eng Phys; 2005 Jul; 27(6):537-41. PubMed ID: 15990070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-driving intersegmental knee moments in cycling computed using a model that includes three-dimensional kinematics of the shank/foot and the effect of simplifying assumptions.
    Gregersen CS; Hull ML
    J Biomech; 2003 Jun; 36(6):803-13. PubMed ID: 12742448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crank inertial load has little effect on steady-state pedaling coordination.
    Fregly BJ; Zajac FE; Dairaghi CA
    J Biomech; 1996 Dec; 29(12):1559-67. PubMed ID: 8945654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of knee model on estimates of muscle and joint forces in recumbent pedaling.
    Koehle MJ; Hull ML
    J Biomech Eng; 2010 Jan; 132(1):011007. PubMed ID: 20524745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automated image-based method of 3D subject-specific body segment parameter estimation for kinetic analyses of rapid movements.
    Sheets AL; Corazza S; Andriacchi TP
    J Biomech Eng; 2010 Jan; 132(1):011004. PubMed ID: 20524742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How changing the inversion/eversion foot angle affects the nondriving intersegmental knee moments and the relative activation of the vastii muscles in cycling.
    Gregersen CS; Hull ML; Hakansson NA
    J Biomech Eng; 2006 Jun; 128(3):391-8. PubMed ID: 16706588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity.
    Arnold AS; Salinas S; Asakawa DJ; Delp SL
    Comput Aided Surg; 2000; 5(2):108-19. PubMed ID: 10862133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the human muscle force-velocity relationship in response to resistance training and subsequent detraining.
    Andersen LL; Andersen JL; Magnusson SP; Suetta C; Madsen JL; Christensen LR; Aagaard P
    J Appl Physiol (1985); 2005 Jul; 99(1):87-94. PubMed ID: 15731398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of the tibio-femoral response to finite element modeling parameters.
    Beillas P; Lee SW; Tashman S; Yang KH
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):209-21. PubMed ID: 17558649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle shortening velocity depends on tissue inertia and level of activation during submaximal contractions.
    Ross SA; Wakeling JM
    Biol Lett; 2016 Jun; 12(6):. PubMed ID: 27354711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power output of the lower limb during variable inertial loading: a comparison between methods using single and repeated contractions.
    Pearson SJ; Cobbold M; Harridge SD
    Eur J Appl Physiol; 2004 Jun; 92(1-2):176-81. PubMed ID: 15045501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial effects on moment development during isokinetic concentric knee extension testing.
    Iossifidou AN; Baltzopoulos V
    J Orthop Sports Phys Ther; 2000 Jun; 30(6):317-23; discussion 324-7. PubMed ID: 10871143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional knee joint loading during seated cycling.
    Ruby P; Hull ML; Hawkins D
    J Biomech; 1992 Jan; 25(1):41-53. PubMed ID: 1733983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle velocity and inertial force from phase contrast MRI.
    Wentland AL; McWalter EJ; Pal S; Delp SL; Gold GE
    J Magn Reson Imaging; 2015 Aug; 42(2):526-32. PubMed ID: 25425185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EMG normalization to study muscle activation in cycling.
    Rouffet DM; Hautier CA
    J Electromyogr Kinesiol; 2008 Oct; 18(5):866-78. PubMed ID: 17507240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of adding trunk motion to the interpretation of the role of joint moments during normal walking.
    Patel M; Talaty M; Ounpuu S
    J Biomech; 2007; 40(16):3563-9. PubMed ID: 17765906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dynamic model of the knee and lower limb for simulating rising movements.
    Shelburne KB; Pandy MG
    Comput Methods Biomech Biomed Engin; 2002 Apr; 5(2):149-59. PubMed ID: 12186724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.