BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15512762)

  • 1. Changes in the fabric and compliance tensors of cancellous bone due to trabecular surface remodeling, predicted by a digital image-based model.
    Tsubota K; Adachi T
    Comput Methods Biomech Biomed Engin; 2004 Aug; 7(4):187-92. PubMed ID: 15512762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state.
    Tsubota K; Adachi T; Tomita Y
    J Biomech; 2002 Dec; 35(12):1541-51. PubMed ID: 12445607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law.
    Tsubota K; Suzuki Y; Yamada T; Hojo M; Makinouchi A; Adachi T
    J Biomech; 2009 May; 42(8):1088-94. PubMed ID: 19403138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements.
    Zauel R; Yeni YN; Bay BK; Dong XN; Fyhrie DP
    J Biomech Eng; 2006 Feb; 128(1):1-6. PubMed ID: 16532610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabric and elastic principal directions of cancellous bone are closely related.
    Odgaard A; Kabel J; van Rietbergen B; Dalstra M; Huiskes R
    J Biomech; 1997 May; 30(5):487-95. PubMed ID: 9109560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Bone adaptive digital analysis for femur bone being in disuse and overload condition].
    Chen X; Gong X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1074-8. PubMed ID: 19024449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors.
    Moreno R; Smedby Ö; Pahr DH
    Biomech Model Mechanobiol; 2016 Aug; 15(4):831-44. PubMed ID: 26341838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling.
    Tsubota K; Adachi T
    Med Eng Phys; 2005 May; 27(4):305-11. PubMed ID: 15823471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscale poroelastic metamodel for efficient mesoscale bone remodelling simulations.
    Villette CC; Phillips ATM
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2077-2091. PubMed ID: 28795282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models.
    Adachi T; Tsubota K; Tomita Y; Hollister SJ
    J Biomech Eng; 2001 Oct; 123(5):403-9. PubMed ID: 11601724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of femoral trabecular bone in dogs.
    Pressel T; Bouguecha A; Vogt U; Meyer-Lindenberg A; Behrens BA; Nolte I; Windhagen H
    Biomed Eng Online; 2005 Mar; 4():17. PubMed ID: 15774014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trabecular bone remodeling phenomenon as a pattern for structural optimization.
    Nowak M
    Stud Health Technol Inform; 2008; 133():196-200. PubMed ID: 18376027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur.
    Mizuno K; Matsukawa M; Otani T; Takada M; Mano I; Tsujimoto T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1480-7. PubMed ID: 18986937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.
    Boyle C; Kim IY
    J Biomech; 2011 Mar; 44(5):935-42. PubMed ID: 21159341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How morphology predicts mechanical properties of trabecular structures depends on intra-specimen trabecular thickness variations.
    van Lenthe GH; Huiskes R
    J Biomech; 2002 Sep; 35(9):1191-7. PubMed ID: 12163309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The modified super-ellipsoid yield criterion for human trabecular bone.
    Bayraktar HH; Gupta A; Kwon RY; Papadopoulos P; Keaveny TM
    J Biomech Eng; 2004 Dec; 126(6):677-84. PubMed ID: 15796326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.