These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 15513921)
1. Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber. Papanikolopoulou K; Schoehn G; Forge V; Forsyth VT; Riekel C; Hernandez JF; Ruigrok RW; Mitraki A J Biol Chem; 2005 Jan; 280(4):2481-90. PubMed ID: 15513921 [TBL] [Abstract][Full Text] [Related]
2. A peptide from the adenovirus fiber shaft forms amyloid-type fibrils. Luckey M; Hernandez J; Arlaud G; Forsyth VT; Ruigrok RW; Mitraki A FEBS Lett; 2000 Feb; 468(1):23-7. PubMed ID: 10683434 [TBL] [Abstract][Full Text] [Related]
3. Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant. Lee AS; Galea C; DiGiammarino EL; Jun B; Murti G; Ribeiro RC; Zambetti G; Schultz CP; Kriwacki RW J Mol Biol; 2003 Mar; 327(3):699-709. PubMed ID: 12634062 [TBL] [Abstract][Full Text] [Related]
4. Supramolecular amyloid-like assembly of the polypeptide sequence coded by exon 30 of human tropoelastin. Tamburro AM; Pepe A; Bochicchio B; Quaglino D; Ronchetti IP J Biol Chem; 2005 Jan; 280(4):2682-90. PubMed ID: 15550396 [TBL] [Abstract][Full Text] [Related]
5. Amyloid-like fibril formation in an all beta-barrel protein. Partially structured intermediate state(s) is a precursor for fibril formation. Srisailam S; Kumar TK; Rajalingam D; Kathir KM; Sheu HS; Jan FJ; Chao PC; Yu C J Biol Chem; 2003 May; 278(20):17701-9. PubMed ID: 12584201 [TBL] [Abstract][Full Text] [Related]
6. The role of protein sequence and amino acid composition in amyloid formation: scrambling and backward reading of IAPP amyloid fibrils. Sabaté R; Espargaró A; de Groot NS; Valle-Delgado JJ; Fernàndez-Busquets X; Ventura S J Mol Biol; 2010 Nov; 404(2):337-52. PubMed ID: 20887731 [TBL] [Abstract][Full Text] [Related]
7. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a beta-hairpin in the OspA single-layer beta-sheet. Ohnishi S; Koide A; Koide S J Mol Biol; 2000 Aug; 301(2):477-89. PubMed ID: 10926522 [TBL] [Abstract][Full Text] [Related]
10. Adenovirus fibre shaft sequences fold into the native triple beta-spiral fold when N-terminally fused to the bacteriophage T4 fibritin foldon trimerisation motif. Papanikolopoulou K; Teixeira S; Belrhali H; Forsyth VT; Mitraki A; van Raaij MJ J Mol Biol; 2004 Sep; 342(1):219-27. PubMed ID: 15313619 [TBL] [Abstract][Full Text] [Related]
11. Amyloid fibrillogenesis of silkmoth chorion protein peptide-analogues via a liquid-crystalline intermediate phase. Hamodrakas SJ; Hoenger A; Iconomidou VA J Struct Biol; 2004 Mar; 145(3):226-35. PubMed ID: 14960373 [TBL] [Abstract][Full Text] [Related]
12. Formation of amyloid fibrils in vitro by human gammaD-crystallin and its isolated domains. Papanikolopoulou K; Mills-Henry I; Thol SL; Wang Y; Gross AA; Kirschner DA; Decatur SM; King J Mol Vis; 2008 Jan; 14():81-9. PubMed ID: 18253099 [TBL] [Abstract][Full Text] [Related]
13. Amyloid fibril formation propensity is inherent into the hexapeptide tandemly repeating sequence of the central domain of silkmoth chorion proteins of the A-family. Iconomidou VA; Chryssikos GD; Gionis V; Galanis AS; Cordopatis P; Hoenger A; Hamodrakas SJ J Struct Biol; 2006 Dec; 156(3):480-8. PubMed ID: 17056273 [TBL] [Abstract][Full Text] [Related]
14. The native-like conformation of Ure2p in fibrils assembled under physiologically relevant conditions switches to an amyloid-like conformation upon heat-treatment of the fibrils. Bousset L; Briki F; Doucet J; Melki R J Struct Biol; 2003 Feb; 141(2):132-42. PubMed ID: 12615539 [TBL] [Abstract][Full Text] [Related]
15. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis. Jaikaran ET; Higham CE; Serpell LC; Zurdo J; Gross M; Clark A; Fraser PE J Mol Biol; 2001 May; 308(3):515-25. PubMed ID: 11327784 [TBL] [Abstract][Full Text] [Related]
16. Structural regulation of a peptide-conjugated graft copolymer: a simple model for amyloid formation. Koga T; Taguchi K; Kobuke Y; Kinoshita T; Higuchi M Chemistry; 2003 Mar; 9(5):1146-56. PubMed ID: 12596151 [TBL] [Abstract][Full Text] [Related]
17. Amyloid fibril formation requires a chemically discriminating nucleation event: studies of an amyloidogenic sequence from the bacterial protein OsmB. Jarrett JT; Lansbury PT Biochemistry; 1992 Dec; 31(49):12345-52. PubMed ID: 1463722 [TBL] [Abstract][Full Text] [Related]
18. A cylinder-shaped double ribbon structure formed by an amyloid hairpin peptide derived from the beta-sheet of murine PrP: an X-ray and molecular dynamics simulation study. Croixmarie V; Briki F; David G; Coïc YM; Ovtracht L; Doucet J; Jamin N; Sanson A J Struct Biol; 2005 Jun; 150(3):284-99. PubMed ID: 15890277 [TBL] [Abstract][Full Text] [Related]
19. Charge attraction and beta propensity are necessary for amyloid fibril formation from tetrapeptides. Tjernberg L; Hosia W; Bark N; Thyberg J; Johansson J J Biol Chem; 2002 Nov; 277(45):43243-6. PubMed ID: 12215440 [TBL] [Abstract][Full Text] [Related]
20. Structure-based design and study of non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity. Kapurniotu A; Schmauder A; Tenidis K J Mol Biol; 2002 Jan; 315(3):339-50. PubMed ID: 11786016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]