BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15513923)

  • 1. C-terminal sequences direct cyclin D1-CRM1 binding.
    Benzeno S; Diehl JA
    J Biol Chem; 2004 Dec; 279(53):56061-6. PubMed ID: 15513923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation.
    Alt JR; Cleveland JL; Hannink M; Diehl JA
    Genes Dev; 2000 Dec; 14(24):3102-14. PubMed ID: 11124803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bifunctional regulatory element in human somatic Wee1 mediates cyclin A/Cdk2 binding and Crm1-dependent nuclear export.
    Li C; Andrake M; Dunbrack R; Enders GH
    Mol Cell Biol; 2010 Jan; 30(1):116-30. PubMed ID: 19858290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1.
    Benzeno S; Lu F; Guo M; Barbash O; Zhang F; Herman JG; Klein PS; Rustgi A; Diehl JA
    Oncogene; 2006 Oct; 25(47):6291-303. PubMed ID: 16732330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear export of the oncoprotein v-ErbA is mediated by acquisition of a viral nuclear export sequence.
    DeLong LJ; Bonamy GM; Fink EN; Allison LA
    J Biol Chem; 2004 Apr; 279(15):15356-67. PubMed ID: 14729678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CRM1-dependent nuclear export pathway is involved in the regulation of IRF-5 subcellular localization.
    Lin R; Yang L; Arguello M; Penafuerte C; Hiscott J
    J Biol Chem; 2005 Jan; 280(4):3088-95. PubMed ID: 15556946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GSK-3beta inhibition: at the crossroad between Akt and mTOR constitutive activation to enhance cyclin D1 protein stability in mantle cell lymphoma.
    Dal Col J; Dolcetti R
    Cell Cycle; 2008 Sep; 7(18):2813-6. PubMed ID: 18769147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene.
    Lu F; Gladden AB; Diehl JA
    Cancer Res; 2003 Nov; 63(21):7056-61. PubMed ID: 14612495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex.
    Petosa C; Schoehn G; Askjaer P; Bauer U; Moulin M; Steuerwald U; Soler-López M; Baudin F; Mattaj IW; Müller CW
    Mol Cell; 2004 Dec; 16(5):761-75. PubMed ID: 15574331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Structural basis for CRM1-mediated nuclear export].
    Koyama M; Matsuura Y
    Seikagaku; 2011 Sep; 83(9):834-8. PubMed ID: 22111374
    [No Abstract]   [Full Text] [Related]  

  • 11. A cellular reporter to evaluate CRM1 nuclear export activity: functional analysis of the cancer-related mutant E571K.
    García-Santisteban I; Arregi I; Alonso-Mariño M; Urbaneja MA; Garcia-Vallejo JJ; Bañuelos S; Rodríguez JA
    Cell Mol Life Sci; 2016 Dec; 73(24):4685-4699. PubMed ID: 27312238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase following genotoxic stress.
    Brown VM; Krynetski EY; Krynetskaia NF; Grieger D; Mukatira ST; Murti KG; Slaughter CA; Park HW; Evans WE
    J Biol Chem; 2004 Feb; 279(7):5984-92. PubMed ID: 14617633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1.
    Yang J; Bardes ES; Moore JD; Brennan J; Powers MA; Kornbluth S
    Genes Dev; 1998 Jul; 12(14):2131-43. PubMed ID: 9679058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation.
    Okabe H; Lee SH; Phuchareon J; Albertson DG; McCormick F; Tetsu O
    PLoS One; 2006 Dec; 1(1):e128. PubMed ID: 17205132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRM1-mediated nuclear export is required for 26 S proteasome-dependent degradation of the TRIP-Br2 proto-oncoprotein.
    Cheong JK; Gunaratnam L; Hsu SI
    J Biol Chem; 2008 Apr; 283(17):11661-76. PubMed ID: 18316374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP.
    Monecke T; Güttler T; Neumann P; Dickmanns A; Görlich D; Ficner R
    Science; 2009 May; 324(5930):1087-91. PubMed ID: 19389996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals.
    Fung HY; Fu SC; Chook YM
    Elife; 2017 Mar; 6():. PubMed ID: 28282025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rho GTPase-dependent signaling is required for macrophage migration inhibitory factor-mediated expression of cyclin D1.
    Swant JD; Rendon BE; Symons M; Mitchell RA
    J Biol Chem; 2005 Jun; 280(24):23066-72. PubMed ID: 15840582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 2.1-Å-resolution crystal structure of unliganded CRM1 reveals the mechanism of autoinhibition.
    Saito N; Matsuura Y
    J Mol Biol; 2013 Jan; 425(2):350-64. PubMed ID: 23164569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of cyclin D1 cytoplasmic sequestration in the survival of postmitotic neurons.
    Sumrejkanchanakij P; Tamamori-Adachi M; Matsunaga Y; Eto K; Ikeda MA
    Oncogene; 2003 Nov; 22(54):8723-30. PubMed ID: 14647467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.