These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 15514025)

  • 1. Computerized microfluidic cell culture using elastomeric channels and Braille displays.
    Gu W; Zhu X; Futai N; Cho BS; Takayama S
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15861-6. PubMed ID: 15514025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Handheld recirculation system and customized media for microfluidic cell culture.
    Futai N; Gu W; Song JW; Takayama S
    Lab Chip; 2006 Jan; 6(1):149-54. PubMed ID: 16372083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-controlled microcirculatory support system for endothelial cell culture and shearing.
    Song JW; Gu W; Futai N; Warner KA; Nor JE; Takayama S
    Anal Chem; 2005 Jul; 77(13):3993-9. PubMed ID: 15987102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic valves with integrated structured elastomeric membranes for reversible fluidic entrapment and in situ channel functionalization.
    Vanapalli SA; Wijnperle D; van den Berg A; Mugele F; Duits MH
    Lab Chip; 2009 May; 9(10):1461-7. PubMed ID: 19417915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture.
    Lee KS; Boccazzi P; Sinskey AJ; Ram RJ
    Lab Chip; 2011 May; 11(10):1730-9. PubMed ID: 21445442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.
    Tung YC; Torisawa YS; Futai N; Takayama S
    Lab Chip; 2007 Nov; 7(11):1497-503. PubMed ID: 17960277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation.
    Zhu X; Yi Chu L; Chueh BH; Shen M; Hazarika B; Phadke N; Takayama S
    Analyst; 2004 Nov; 129(11):1026-31. PubMed ID: 15508030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-yield method for generating mass-transfer gradients in elastomer microfluidics using impermeable capillaries.
    Pinelis M; Shamban L; Jovic A; Maharbiz MM
    Biomed Microdevices; 2008 Dec; 10(6):807. PubMed ID: 18654854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A self-contained, programmable microfluidic cell culture system with real-time microscopy access.
    Skafte-Pedersen P; Hemmingsen M; Sabourin D; Blaga FS; Bruus H; Dufva M
    Biomed Microdevices; 2012 Apr; 14(2):385-99. PubMed ID: 22160447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design rules for pumping and metering of highly viscous fluids in microfluidics.
    Perry SL; Higdon JJ; Kenis PJ
    Lab Chip; 2010 Nov; 10(22):3112-24. PubMed ID: 20877780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enabling portable multiple-line refreshable Braille displays with electroactive elastomers.
    Frediani G; Busfield J; Carpi F
    Med Eng Phys; 2018 Oct; 60():86-93. PubMed ID: 30082203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Siphon-driven microfluidic passive pump with a yarn flow resistance controller.
    Jeong GS; Oh J; Kim SB; Dokmeci MR; Bae H; Lee SH; Khademhosseini A
    Lab Chip; 2014 Nov; 14(21):4213-9. PubMed ID: 25184743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies.
    Tourovskaia A; Figueroa-Masot X; Folch A
    Lab Chip; 2005 Jan; 5(1):14-9. PubMed ID: 15616734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics on Standard Petri Dishes for Bioscientists.
    Deroy C; Nebuloni F; Cook PR; Walsh EJ
    Small Methods; 2021 Nov; 5(11):e2100724. PubMed ID: 34927960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells.
    Lee JM; Kim JE; Kang E; Lee SH; Chung BG
    Electrophoresis; 2011 Nov; 32(22):3133-7. PubMed ID: 22102496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upgrading well plates using open microfluidic patterning.
    Berry SB; Zhang T; Day JH; Su X; Wilson IZ; Berthier E; Theberge AB
    Lab Chip; 2017 Dec; 17(24):4253-4264. PubMed ID: 29164190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of soft machines using actuators operated by a Braille display.
    Mosadegh B; Mazzeo AD; Shepherd RF; Morin SA; Gupta U; Sani IZ; Lai D; Takayama S; Whitesides GM
    Lab Chip; 2014 Jan; 14(1):189-99. PubMed ID: 24196070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation.
    Somaweera H; Haputhanthri SO; Ibraguimov A; Pappas D
    Analyst; 2015 Aug; 140(15):5029-38. PubMed ID: 26050759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.