BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 15514074)

  • 1. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites.
    Wong WS; Yang Z; Goldman N; Nielsen R
    Genetics; 2004 Oct; 168(2):1041-51. PubMed ID: 15514074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for detecting positive selection at single amino acid sites.
    Suzuki Y; Gojobori T
    Mol Biol Evol; 1999 Oct; 16(10):1315-28. PubMed ID: 10563013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New methods for detecting positive selection at single amino acid sites.
    Suzuki Y
    J Mol Evol; 2004 Jul; 59(1):11-9. PubMed ID: 15383903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical properties of the branch-site test of positive selection.
    Yang Z; dos Reis M
    Mol Biol Evol; 2011 Mar; 28(3):1217-28. PubMed ID: 21087944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring natural selection operating on conservative and radical substitution at single amino acid sites.
    Suzuki Y
    Genes Genet Syst; 2007 Aug; 82(4):341-60. PubMed ID: 17895585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting amino acid sites under positive selection and purifying selection.
    Massingham T; Goldman N
    Genetics; 2005 Mar; 169(3):1753-62. PubMed ID: 15654091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The branch-site test of positive selection is surprisingly robust but lacks power under synonymous substitution saturation and variation in GC.
    Gharib WH; Robinson-Rechavi M
    Mol Biol Evol; 2013 Jul; 30(7):1675-86. PubMed ID: 23558341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliabilities of parsimony-based and likelihood-based methods for detecting positive selection at single amino acid sites.
    Suzuki Y; Nei M
    Mol Biol Evol; 2001 Dec; 18(12):2179-85. PubMed ID: 11719567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Not so different after all: a comparison of methods for detecting amino acid sites under selection.
    Kosakovsky Pond SL; Frost SD
    Mol Biol Evol; 2005 May; 22(5):1208-22. PubMed ID: 15703242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting individual sites subject to episodic diversifying selection.
    Murrell B; Wertheim JO; Moola S; Weighill T; Scheffler K; Kosakovsky Pond SL
    PLoS Genet; 2012; 8(7):e1002764. PubMed ID: 22807683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of physicochemical selective pressure on protein encoding nucleotide sequences.
    Wong WS; Sainudiin R; Nielsen R
    BMC Bioinformatics; 2006 Mar; 7():148. PubMed ID: 16542458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution.
    Bielawski JP; Yang Z
    J Mol Evol; 2004 Jul; 59(1):121-32. PubMed ID: 15383915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smoothed Bootstrap Aggregation for Assessing Selection Pressure at Amino Acid Sites.
    Mingrone J; Susko E; Bielawski J
    Mol Biol Evol; 2016 Nov; 33(11):2976-2989. PubMed ID: 27486222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene.
    Nielsen R; Yang Z
    Genetics; 1998 Mar; 148(3):929-36. PubMed ID: 9539414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Likelihood-based clustering (LiBaC) for codon models, a method for grouping sites according to similarities in the underlying process of evolution.
    Bao L; Gu H; Dunn KA; Bielawski JP
    Mol Biol Evol; 2008 Sep; 25(9):1995-2007. PubMed ID: 18586695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-to-site variation of synonymous substitution rates.
    Pond SK; Muse SV
    Mol Biol Evol; 2005 Dec; 22(12):2375-85. PubMed ID: 16107593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. False-positive selection identified by ML-based methods: examples from the Sig1 gene of the diatom Thalassiosira weissflogii and the tax gene of a human T-cell lymphotropic virus.
    Suzuki Y; Nei M
    Mol Biol Evol; 2004 May; 21(5):914-21. PubMed ID: 15014169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved inference of site-specific positive selection under a generalized parametric codon model when there are multinucleotide mutations and multiple nonsynonymous rates.
    Dunn KA; Kenney T; Gu H; Bielawski JP
    BMC Evol Biol; 2019 Jan; 19(1):22. PubMed ID: 30642241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The site-wise log-likelihood score is a good predictor of genes under positive selection.
    Wang HC; Susko E; Roger AJ
    J Mol Evol; 2013 May; 76(5):280-94. PubMed ID: 23595859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical properties of the methods for detecting positively selected amino acid sites.
    Suzuki Y
    Gene; 2006 Jan; 365():125-9. PubMed ID: 16256279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.