BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 15514200)

  • 1. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms.
    Shojima M; Oshima M; Takagi K; Torii R; Hayakawa M; Katada K; Morita A; Kirino T
    Stroke; 2004 Nov; 35(11):2500-5. PubMed ID: 15514200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamics in a Middle Cerebral Artery Aneurysm Before Its Growth and Fatal Rupture: Case Study and Review of the Literature.
    Wang Y; Leng X; Zhou X; Li W; Siddiqui AH; Xiang J
    World Neurosurg; 2018 Nov; 119():e395-e402. PubMed ID: 30071328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association between hemodynamics, morphology, and rupture risk of intracranial aneurysms: a computational fluid modeling study.
    Qiu T; Jin G; Xing H; Lu H
    Neurol Sci; 2017 Jun; 38(6):1009-1018. PubMed ID: 28285454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High wall shear stress beyond a certain range in the parent artery could predict the risk of anterior communicating artery aneurysm rupture at follow-up.
    Zhang X; Karuna T; Yao ZQ; Duan CZ; Wang XM; Jiang ST; Li XF; Yin JH; He XY; Guo SQ; Chen YC; Liu WC; Li R; Fan HY
    J Neurosurg; 2018 Sep; 131(3):868-875. PubMed ID: 30265195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemodynamic changes in a middle cerebral artery aneurysm at follow-up times before and after its rupture: a case report and a review of the literature.
    Sejkorová A; Dennis KD; Švihlová H; Petr O; Lanzino G; Hejčl A; Dragomir-Daescu D
    Neurosurg Rev; 2017 Apr; 40(2):329-338. PubMed ID: 27882440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Hemodynamic Characteristics Before Growth in Growing Cerebral Aneurysms by Analyzing Time-of-Flight Magnetic Resonance Angiography Images Alone: Preliminary Results.
    Kimura H; Hayashi K; Taniguchi M; Hosoda K; Fujita A; Seta T; Tomiyama A; Kohmura E
    World Neurosurg; 2019 Feb; 122():e1439-e1448. PubMed ID: 30465954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points.
    Fukazawa K; Ishida F; Umeda Y; Miura Y; Shimosaka S; Matsushima S; Taki W; Suzuki H
    World Neurosurg; 2015 Jan; 83(1):80-6. PubMed ID: 23403347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stagnation and complex flow in ruptured cerebral aneurysms: a possible association with hemostatic pattern.
    Tsuji M; Ishikawa T; Ishida F; Furukawa K; Miura Y; Shiba M; Sano T; Tanemura H; Umeda Y; Shimosaka S; Suzuki H
    J Neurosurg; 2017 May; 126(5):1566-1572. PubMed ID: 27257837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms.
    Miura Y; Ishida F; Umeda Y; Tanemura H; Suzuki H; Matsushima S; Shimosaka S; Taki W
    Stroke; 2013 Feb; 44(2):519-21. PubMed ID: 23223503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wall shear stress association with rupture status in volume matched sidewall aneurysms.
    Lauric A; Hippelheuser J; Cohen AD; Kadasi LM; Malek AM
    J Neurointerv Surg; 2014 Jul; 6(6):466-73. PubMed ID: 23929550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture.
    Cebral JR; Vazquez M; Sforza DM; Houzeaux G; Tateshima S; Scrivano E; Bleise C; Lylyk P; Putman CM
    J Neurointerv Surg; 2015 Jul; 7(7):530-6. PubMed ID: 24827066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
    Valen-Sendstad K; Bergersen AW; Shimogonya Y; Goubergrits L; Bruening J; Pallares J; Cito S; Piskin S; Pekkan K; Geers AJ; Larrabide I; Rapaka S; Mihalef V; Fu W; Qiao A; Jain K; Roller S; Mardal KA; Kamakoti R; Spirka T; Ashton N; Revell A; Aristokleous N; Houston JG; Tsuji M; Ishida F; Menon PG; Browne LD; Broderick S; Shojima M; Koizumi S; Barbour M; Aliseda A; Morales HG; Lefèvre T; Hodis S; Al-Smadi YM; Tran JS; Marsden AL; Vaippummadhom S; Einstein GA; Brown AG; Debus K; Niizuma K; Rashad S; Sugiyama SI; Owais Khan M; Updegrove AR; Shadden SC; Cornelissen BMW; Majoie CBLM; Berg P; Saalfield S; Kono K; Steinman DA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):544-564. PubMed ID: 30203115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.
    Evju Ø; Valen-Sendstad K; Mardal KA
    J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and Hemodynamic Factors Associated with Ruptured Middle Cerebral Artery Mirror Aneurysms: A Retrospective Study.
    Xu L; Wang H; Chen Y; Dai Y; Lin B; Liang F; Wan J; Yang Y; Zhao B
    World Neurosurg; 2020 May; 137():e138-e143. PubMed ID: 32004740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in wall shear stress magnitude after aneurysm rupture.
    Kono K; Tomura N; Yoshimura R; Terada T
    Acta Neurochir (Wien); 2013 Aug; 155(8):1559-63. PubMed ID: 23715949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid-induced wall shear stress in anthropomorphic brain aneurysm models: MR phase-contrast study at 3 T.
    Ahn S; Shin D; Tateshima S; Tanishita K; Vinuela F; Sinha S
    J Magn Reson Imaging; 2007 Jun; 25(6):1120-30. PubMed ID: 17520716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinctive flow pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs.
    Kawaguchi T; Nishimura S; Kanamori M; Takazawa H; Omodaka S; Sato K; Maeda N; Yokoyama Y; Midorikawa H; Sasaki T; Nishijima M
    J Neurosurg; 2012 Oct; 117(4):774-80. PubMed ID: 22920960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk.
    Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H
    J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological Effect on Wall Shear Stress in Intracranial Aneurysms.
    Qiu TL; Jin GL; Bao WQ; Lu HT
    J Neurol Surg A Cent Eur Neurosurg; 2018 Mar; 79(2):108-115. PubMed ID: 28701005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.