BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15514776)

  • 1. Synchronous, time resolved, diffuse reflectance FT-IR, energy dispersive EXAFS (EDE) and mass spectrometric investigation of the behaviour of Rh catalysts during NO reduction by CO.
    Newton MA; Jyoti B; Dent AJ; Fiddy SG; Evans J
    Chem Commun (Camb); 2004 Nov; (21):2382-3. PubMed ID: 15514776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FTIR studies of CO adsorption on Rh-Ge/Al2O3 catalysts prepared by surface redox reactions.
    Lafaye G; Mihut C; Especel C; Marécot P; Amiridis MD
    Langmuir; 2004 Nov; 20(24):10612-6. PubMed ID: 15544392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First steps in combining modulation excitation spectroscopy with synchronous dispersive EXAFS/DRIFTS/mass spectrometry for in situ time resolved study of heterogeneous catalysts.
    Ferri D; Kumar MS; Wirz R; Eyssler A; Korsak O; Hug P; Weidenkaff A; Newton MA
    Phys Chem Chem Phys; 2010 Jun; 12(21):5634-46. PubMed ID: 20436968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface and catalytic elucidation of Rh/gamma-Al2O3 catalysts during NO reduction by C3H8 in the presence of excess O2, H2O, and SO2.
    Pekridis G; Kaklidis N; Komvokis V; Athanasiou C; Konsolakis M; Yentekakis IV; Marnellos GE
    J Phys Chem A; 2010 Mar; 114(11):3969-80. PubMed ID: 19852457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining time-resolved hard X-ray diffraction and diffuse reflectance infrared spectroscopy to illuminate CO dissociation and transient carbon storage by supported Pd nanoparticles during CO/NO cycling.
    Newton MA; Di Michiel M; Kubacka A; Fernández-García M
    J Am Chem Soc; 2010 Apr; 132(13):4540-1. PubMed ID: 20225873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sodium modification, different reductants and SO(2) on NO reduction by Rh/Al(2)O(3) catalysts at excess O(2) conditions.
    Chang FY; Wey MY; Chen JC
    J Hazard Mater; 2008 Aug; 156(1-3):348-55. PubMed ID: 18215463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the formation process of photodeposited Rh nanoparticles on TiO2 by in situ time-resolved energy-dispersive XAFS analysis.
    Ohyama J; Teramura K; Okuoka S; Yamazoe S; Kato K; Shishido T; Tanaka T
    Langmuir; 2010 Sep; 26(17):13907-12. PubMed ID: 20669911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions.
    Harada M; Inada Y
    Langmuir; 2009 Jun; 25(11):6049-61. PubMed ID: 19408898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient electrochemical conversion of carbon monoxide by rhodium octaethylporphyrin adsorbed on carbon black.
    Yamazaki S; Yamada Y; Yasuda K
    Inorg Chem; 2005 Sep; 44(19):6512-4. PubMed ID: 16156605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time fourier transform-infrared analysis of carbon monoxide and nitric oxide in sidestream cigarette smoke.
    Thompson BT; Mizaikoff B
    Appl Spectrosc; 2006 Mar; 60(3):272-8. PubMed ID: 16608570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic reactions on neutral Rh oxide clusters more efficient than on neutral Rh clusters.
    Yamada A; Miyajima K; Mafuné F
    Phys Chem Chem Phys; 2012 Mar; 14(12):4188-95. PubMed ID: 22354062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid monitoring of the nature and interconversion of supported catalyst phases and of their influence upon performance: CO oxidation to CO2 by gamma-Al2O3 supported Rh catalysts.
    Newton MA; Dent AJ; Diaz-Moreno S; Fiddy SG; Jyoti B; Evans J
    Chemistry; 2006 Feb; 12(7):1975-85. PubMed ID: 16402395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.
    Hung CM
    J Hazard Mater; 2009 Apr; 163(1):180-6. PubMed ID: 18657902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on the characteristics of CO oxidation at room temperature by metallic Pt.
    Seo PW; Choi HJ; Hong SI; Hong SC
    J Hazard Mater; 2010 Jun; 178(1-3):917-25. PubMed ID: 20207073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of NO by CO using Pd-CeTb and Pd-CeZr catalysts supported on SiO2 and La2O3-Al2O3.
    Ferrer V; Finol D; Solano R; Moronta A; Ramos M
    J Environ Sci (China); 2015 Jan; 27():87-96. PubMed ID: 25597666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Cr and Pt promoters on the surface properties of tungstated zirconia: FTIR spectroscopy of probe molecules (CO and NO).
    Mihaylov M; Hadjiivanov K; Knözinger H
    Phys Chem Chem Phys; 2006 Jan; 8(3):407-17. PubMed ID: 16482284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal-energy measurements of angle-resolved product CO2 in catalytic CO oxidation by means of infrared chemiluminescence.
    Yamanaka T; Matsushima T
    Rev Sci Instrum; 2007 Mar; 78(3):034105. PubMed ID: 17411200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature CO(ad) desorption/exchange kinetics on Pt electrodes-A combined in situ IR and mass spectrometry study.
    Heinen M; Chen YX; Jusys Z; Behm RJ
    Chemphyschem; 2007 Dec; 8(17):2484-9. PubMed ID: 17960746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical study on the adsorption of carbon oxides and oxidation of their adsorption products on platinum group metals and alloys.
    Siwek H; Lukaszewski M; Czerwiński A
    Phys Chem Chem Phys; 2008 Jul; 10(25):3752-65. PubMed ID: 18563236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalysis of oxidation of carbon monoxide on supported gold nanoparticle.
    Tseng CH; Yang TC; Wu HE; Chiang HC
    J Hazard Mater; 2009 Jul; 166(2-3):686-94. PubMed ID: 19144461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.