These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 15515164)

  • 1. Increased rate of chondrocyte aggregation in a wavy-walled bioreactor.
    Bueno EM; Bilgen B; Carrier RL; Barabino GA
    Biotechnol Bioeng; 2004 Dec; 88(6):767-77. PubMed ID: 15515164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering.
    Bilgen B; Sucosky P; Neitzel GP; Barabino GA
    Biotechnol Bioeng; 2006 Dec; 95(6):1009-22. PubMed ID: 17031866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs.
    Bueno EM; Bilgen B; Barabino GA
    Tissue Eng; 2005; 11(11-12):1699-709. PubMed ID: 16411815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development.
    Saini S; Wick TM
    Biotechnol Prog; 2003; 19(2):510-21. PubMed ID: 12675595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of mixing in a novel wavy-walled bioreactor for tissue engineering.
    Bilgen B; Chang-Mateu IM; Barabino GA
    Biotechnol Bioeng; 2005 Dec; 92(7):907-19. PubMed ID: 16175564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing cell seeding of scaffolds in tissue engineering through manipulation of hydrodynamic parameters.
    Bueno EM; Laevsky G; Barabino GA
    J Biotechnol; 2007 May; 129(3):516-31. PubMed ID: 17324484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel rotating-shaft bioreactor for two-phase cultivation of tissue-engineered cartilage.
    Chen HC; Lee HP; Sung ML; Liao CJ; Hu YC
    Biotechnol Prog; 2004; 20(6):1802-9. PubMed ID: 15575715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment.
    Raimondi MT; Boschetti F; Falcone L; Fiore GB; Remuzzi A; Marinoni E; Marazzi M; Pietrabissa R
    Biomech Model Mechanobiol; 2002 Jun; 1(1):69-82. PubMed ID: 14586708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid mechanics of a spinner-flask bioreactor.
    Sucosky P; Osorio DF; Brown JB; Neitzel GP
    Biotechnol Bioeng; 2004 Jan; 85(1):34-46. PubMed ID: 14705010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-density cultures of bovine chondrocytes: effects of scaffold material and culture system.
    Hu JC; Athanasiou KA
    Biomaterials; 2005 May; 26(14):2001-12. PubMed ID: 15576174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the lattice Boltzmann method simulation of a two-phase flow bioreactor for artificially grown cartilage cells.
    Hussein MA; Esterl S; Pörtner R; Wiegandt K; Becker T
    J Biomech; 2008 Dec; 41(16):3455-61. PubMed ID: 19019373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An actively mixed mini-bioreactor for protein production from suspended animal cells.
    Diao J; Young L; Zhou P; Shuler ML
    Biotechnol Bioeng; 2008 May; 100(1):72-81. PubMed ID: 18078290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated experimental-computational approach for the study of engineered cartilage constructs subjected to combined regimens of hydrostatic pressure and interstitial perfusion.
    Moretti M; Freed LE; Padera RF; Laganà K; Boschetti F; Raimondi MT
    Biomed Mater Eng; 2008; 18(4-5):273-8. PubMed ID: 19065033
    [No Abstract]   [Full Text] [Related]  

  • 14. Computational fluid dynamics for improved bioreactor design and 3D culture.
    Hutmacher DW; Singh H
    Trends Biotechnol; 2008 Apr; 26(4):166-72. PubMed ID: 18261813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs.
    Schulz RM; Wüstneck N; van Donkelaar CC; Shelton JC; Bader A
    Biotechnol Bioeng; 2008 Nov; 101(4):714-28. PubMed ID: 18814291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinetic modeling of chondrocyte culture for manufacture of tissue-engineered cartilage.
    Kino-Oka M; Maeda Y; Yamamoto T; Sugawara K; Taya M
    J Biosci Bioeng; 2005 Mar; 99(3):197-207. PubMed ID: 16233778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaffold-free cartilage by rotational culture for tissue engineering.
    Furukawa KS; Imura K; Tateishi T; Ushida T
    J Biotechnol; 2008 Jan; 133(1):134-45. PubMed ID: 17913274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scale-up of breast cancer stem cell aggregate cultures to suspension bioreactors.
    Youn BS; Sen A; Behie LA; Girgis-Gabardo A; Hassell JA
    Biotechnol Prog; 2006; 22(3):801-10. PubMed ID: 16739964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of ultrasound stimulation versus bioreactors on neocartilage formation in tissue engineering scaffolds seeded with human chondrocytes in vitro.
    Hsu SH; Kuo CC; Whu SW; Lin CH; Tsai CL
    Biomol Eng; 2006 Oct; 23(5):259-64. PubMed ID: 16890016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel bioreactors for the culture and expansion of aggregative neural stem cells.
    Ng YL; Chase HA
    Bioprocess Biosyst Eng; 2008 Aug; 31(5):393-400. PubMed ID: 18026758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.